Effective feature selection technique for text classification
by Hari Seetha; M. Narasimha Murty; R. Saravanan
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 7, No. 3, 2015

Abstract: Text classification plays a vital role in the organisation of the unceasing growth of digital documents. High dimensionality of feature space is a major hassle in text classification. Feature selection, an effective preprocessing technique improves the computational efficiency and the accuracy of a text classifier. In the present paper, text classification is performed with Zipf's law-based feature selection and the use of linear SVM weight for feature ranking. A hybrid feature selection method combining these two feature selection techniques is proposed. Nearest neighbour and SVM classifiers are chosen as text classifiers for their good classification accuracy reported in many text classification tasks. Moreover, to investigate the effect of kernel type on the text classification both linear and non-linear kernels in SVM are examined. The performance is evaluated by determining classification accuracy using ten-fold cross-validation. Experimental results with four benchmark corpuses were encouraging and demonstrated that the classification performance using hybrid feature selection method outperformed the classification performance obtained by selecting either medium frequent features based on Zipf's law or using feature selection by linear SVM.

Online publication date: Fri, 28-Aug-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com