Assessing random field models in finite element analysis: a case study
by Vincent De Groof; Michael Oberguggenberger
International Journal of Reliability and Safety (IJRS), Vol. 8, No. 2/3/4, 2014

Abstract: The buckling load of thin-walled structures is sensitive to the presence of imperfections. Random field models constitute an established approach to accounting for these imperfections in numerical computations. Current evaluations of finite element models including random fields are usually done by comparison with the experimental buckling loads. This paper proposes an alternative approach to account for discrepancies inherent to numerical modelling. We use this to judge the shape of fitted correlation functions and the sensitivity of the computed buckling load with respect to the number of eigenvectors included in the expansion of the random field. Further, the applicability of fitted model covariance functions is contrasted with a principal component analysis approach as well as with artificially created local random imperfections. The results show that random field models have to be used with greatest care in order to avoid erroneous predictions of the buckling load.

Online publication date: Wed, 20-May-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email