Data mining model adjustment control charts for cascade processes
by Seoung Bum Kim; Weerawat Jitpitaklert; Victoria C.P. Chen; Jinpyo Lee; Sun-Kyoung Park
European J. of Industrial Engineering (EJIE), Vol. 7, No. 4, 2013

Abstract: Control charts have been widely recognised as important tools in system monitoring of abnormal behaviour and quality improvement. Traditional control charts have a major assumption that successive observations are uncorrelated and normally distributed. When this assumption is violated, the traditional control charts do not perform well, but instead show increased false alarm rates. In this study, we propose a data mining model adjustment control chart to address autocorrelation problems for cascade processes. The basic idea of the proposed control chart is to monitor the residuals obtained by data mining models. The data mining models used in this study include support vector regression and artificial neural networks. A simulation study was conducted to evaluate the performance of the proposed control chart and compare it with the standard regression adjustment control chart and the observations-based control chart in terms of average run length performance. The results showed that the proposed data mining model adjustment control charts yielded better performance than the two other methods considered in this study. [Received 8 December 2010; Revised 19 June 2011; Revised 9 September 2011; Accepted 29 November 2011]

Online publication date: Fri, 28-Feb-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the European J. of Industrial Engineering (EJIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email