Energy-efficient transmissions for bursty traffic in underwater sensor networks
by Chih-Min Chao; Ming-Wei Lu
International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Vol. 13, No. 1, 2013

Abstract: In Underwater Sensor Networks (UWSNs), sensor nodes have limited energy resource and consume a lot of power during message transmission. Since expensive transmitting power consumption is an inevitable feature of underwater acoustic transmission, to extend network operation time, it is desirable for nodes to avoid energy wastage resulting from transmission collisions. Enabling nodes to use multiple channels in a contention-free way helps reduce transmission collisions. To the best of our knowledge, when nodes have bursty traffic loads, existing UWSN multi-channel solutions do not support contention-free transmission while available UWSN single-channel contention-free protocols generally suffer from low utilisation. In this paper, we propose a contention-free multi-channel MAC protocol for UWSNs that work well even when nodes experience uneven and bursty traffic loads. Simulation results verify that the proposed protocol conserves energy and is extremely suitable for a heavy-loaded environment.

Online publication date: Sat, 11-May-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email