Applying partial fault tolerance with explicit area constraints
by David L. Foster; Darrin M. Hanna
International Journal of Embedded Systems (IJES), Vol. 5, No. 1/2, 2013

Abstract: As field programmable gate arrays find increasing use in aerospace and terrestrial applications, a number of methods of fault tolerance have been developed to ensure reliable operation. Current techniques output the required circuit area based on the desired level of fault tolerance with some techniques increasing the area by over 200%. In deployed systems, however, the FPGA is fixed and the area available for adding fault tolerance is limited. As a consequence, protecting an updated, larger circuit using the same fault tolerance scheme may result in a design that no longer fits in the deployed FPGA. This situation dictates the need for a technique that can trade fault tolerance for lower area penalties. To fill this need, this paper presents a new area constrained approach which accepts available hardware resources as an input and outputs a maximally fault tolerant circuit.

Online publication date: Sat, 19-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email