Reduction of the photocatalytic activity of ZnO nanoparticles for UV protection applications
by Takuya Tsuzuki; Rongliang He; Jinfeng Wang; Lu Sun; Xungai Wang; Rosalie Hocking
International Journal of Nanotechnology (IJNT), Vol. 9, No. 10/11/12, 2012

Abstract: The detrimental effects of UV radiation are having a significant impact on our life and environment. The development of effective UV shielding agents is therefore of great importance to our society. ZnO nanoparticles are considered to be one of the most effective UV blocking agents. However, the development of ZnO-based UV shielding products is currently hindered due to the adverse effects of the inherent photocatalytic activity exhibited by ZnO. This paper reports our recent study on the possibility of reducing the photoactivity of ZnO nanoparticles via surface modification and impurity doping. It was found that the photoactivity was drastically reduced by SiO2-coatings that were applied to ZnO quantum dots using the Stöber method and a microemulsion technique. The effect of transition metal doping on the photoactivity was also studied using mechanochemical processing and a co-precipitation method. Cobalt doping reduced the photoactivity, while manganese doping led to mixed results, possibly due to the difference in the location of dopant ions derived from the difference in the synthesis methods.

Online publication date: Thu, 04-Oct-2012

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email