Empirical model for morphological evolution of crystallisation process using artificial neural networks
by Jalal M. Nawash; Mohammad A. Al-Khedher
International Journal of Computational Materials Science and Surface Engineering (IJCMSSE), Vol. 4, No. 4, 2011

Abstract: Understanding and modelling crystals evolution is a major concern in crystallography science and engineering fields. A new approach for modelling nucleation patterns of ZnO-TeO2 crystallisation process is introduced. This approach utilises artificial neural network (ANN) models to estimate time-dependent nucleation and to predict the crystallisation directions that are based on prior formations, which were extracted from processed images of the crystal. Quantitatively, crystals evolution is predicted by a systematic combination of image analysis associated with ANN modelling systems. Different crystallisation stages were characterised by image analysis to distinguish each stage, and to extract created crystal information. It was found that the model is able to successfully predict the crystal evolution with respect to used nucleation seeds.

Online publication date: Sun, 11-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Materials Science and Surface Engineering (IJCMSSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com