Fuzzy-neural model with hybrid market indicators for stock forecasting
by A.A. Adebiyi, C.K. Ayo, S.O. Otokiti
International Journal of Electronic Finance (IJEF), Vol. 5, No. 3, 2011

Abstract: A number of research had been carried out to forecast stock price based on technical indicators, which rely purely on historical stock price data. Nevertheless, their performance is not always satisfactory. In this paper, the effect of using hybrid market indicators of technical, fundamental indicators and experts opinion for stock price prediction is examined. Input variables extracted from these market hybrid indicators are fed into a fuzzy-neural network for improved accuracy of stock price prediction. The empirical results obtained with published stock data shows that the proposed model can be effective to improve accuracy of stock price prediction.

Online publication date: Sat, 16-Jul-2011

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electronic Finance (IJEF):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com