Determining fuzzy rules for student's performance and learning efficiency by using a hybrid approach
by Norazah Yusof, Abdul Razak Hamdan
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 2, No. 2, 2010

Abstract: This paper describes a hybrid approach that combines a fuzzy inference system with a neural network, and with a rough set technique in determining the fuzzy rules from a fuzzy rule base system of the student model. The back-propagation neural-fuzzy approach is used to solve the problem of incompleteness in the decision made by the human experts. By training the neural network with selected patterns that are certain, the proposed approach was expected to produce decisions that could not previously be determined, and accordingly, a complete fuzzy rule base is formed. This paper proposes a rough-fuzzy approach that reduces the complete fuzzy rule base into a concise fuzzy base. After comparing the defuzzified values of the complete fuzzy rule base with the concise fuzzy rule base, it is discovered that the performance of the concise fuzzy rule base does not degrade and it remains complete and consistent.

Online publication date: Mon, 30-Aug-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email