Local features-based script recognition from printed bilingual document images
by S. Abirami, D. Manjula
International Journal of Computer Applications in Technology (IJCAT), Vol. 38, No. 4, 2010

Abstract: Classification and identification of language in a biscript document is one of the important steps in the design of an OCR system for successful analysis and recognition. This paper presents architecture for script recognition of bilingual document images (Tamil, English), which specifically takes the challenges of recognition at character level by predicting the script of word image using its initial character, thereby adapting to various font faces and sizes. This recogniser models every character as Tetra bit values (TBV), which corresponds to the spatial spread, derived from the segmented grids of the character. We employed a decision tree classifier (DTC) for the classification of script on over the patterns generated from TBV. A spatial features-based script recogniser (SFBSR) is trained and tested with bilingual document images, consisting of various Tamil and English words, to show its effectiveness towards script identification. Classification accuracy in training and testing sets is promising. An evaluation of the system performance with various techniques shows a significant performance improvement in SFBSR. This can be embedded with OCR prior to its recognition stage.

Online publication date: Sat, 07-Aug-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com