Causal-effect structure transformation based on hierarchical representation for biomedical sensing
by Naoki Tsuchiya, Mitsuhiro Yoneda, Hiroshi Nakajima
World Review of Science, Technology and Sustainable Development (WRSTSD), Vol. 7, No. 1/2, 2010

Abstract: In general, understanding causality among components in a target system, including a human body, is quite effective and efficient solution since utilisation of the causality helps predicting future system condition, making correct diagnosis and so forth. As for focusing on biomedical sensing, the causality among vital signals obtained from sensors built in measurement equipment should be considered to recognise human's health condition correctly. In addition, effective causality transformation is desired when measurement equipment is improved such as replacing or maintaining components in the equipment. In this article, causality transformation method for improving causality is proposed. It employs a hierarchical representation of the causality based on human-machine collaborative knowledge and its applications of visceral fat area estimation and heart rate monitoring are presented.

Online publication date: Wed, 31-Mar-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the World Review of Science, Technology and Sustainable Development (WRSTSD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email