Graphical models based hierarchical probabilistic community discovery in large-scale social networks
by Haizheng Zhang, Ke Ke, Wei Li, Xuerui Wang
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 2, No. 2, 2010

Abstract: Real-world social networks, while disparate in nature, often comprise of a set of loose clusters (a.k.a. communities), in which members are better connected to each other than to the rest of the network. In addition, such communities are often hierarchical, reflecting the fact that some communities are composed of a few smaller, sub-communities. Discovering the complicated hierarchical community structure can gain us deeper understanding about the networks and the pertaining communities. This paper describes a hierarchical Bayesian model based scheme namely hierarchical social network-pachinko allocation model (HSN-PAM), for discovering probabilistic, hierarchical communities in social networks. This scheme is powered by a previously developed hierarchical Bayesian model. In this scheme, communities are classified into two categories: super-communities and regular-communities. Two different network encoding approaches are explored to evaluate this scheme on research collaborative networks, including CiteSeer. The experimental results demonstrate that HSN-PAM is effective for discovering hierarchical community structures in large-scale social networks.

Online publication date: Thu, 11-Mar-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email