Dynamic robust compensation control to inherent high-frequency motion disturbance on the electro-hydraulic load simulator
by Yaoxing Shang, Zongxia Jiao, Shaoping Wang, Xiaodong Wang
International Journal of Computer Applications in Technology (IJCAT), Vol. 36, No. 2, 2009

Abstract: This paper focuses on a robust control method applied to an electro-Hydraulic Load Simulator (HLS) acting on a special aerodynamic load. Owing to the high-speed on-off valve, some pneumatic aircraft actuators have inherent high-frequency motion disturbance that reduces the dynamic tracking performance. Through combining velocity synchronising decoupling compensation and equivalent disturbance observers, this paper presents a Dynamic Robust Compensation (DRC) to achieve high precision load simulation. The experiments indicate that the velocity synchronising decoupling is used to restrain strong disturbance, whereas the robust compensator is adopted to reduce the remaining extraneous torque from motion flutter efficiently further.

Online publication date: Thu, 13-Aug-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com