Numerical study and experimental validation of particle strand formation
by Damir Kahrimanovic, Christoph Kloss, Georg Aichinger, Stefan Pirker
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 9, No. 6/7, 2009

Abstract: Pneumatic conveying of spherical glass particles through a rectangular channel is studied by means of numerical simulation and compared with optical measurements. Thereby, a double-looping is placed in front of the straight channel in order to generate a particle strand at the bottom of the channel. Finally the profiles of particle velocity and volume concentration are measured by Particle Image Velocimetry (PIV). The corresponding numerical simulations are carried out with the Discrete Phase Model using the Fluent software package. Also some additional sub-models have been introduced in order to describe particle-wall collisions, particle-particle collisions and the influence of particle rotation.

Online publication date: Tue, 21-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com