CFD modelling of molten matte and slag flows in a circular three-phase smelting furnace
by J.J. Bezuidenhout, J.J. Eksteen, S.M. Bradshaw
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 9, No. 6/7, 2009

Abstract: A full-scale three-dimensional CFD model, coupled with electrical modelling, was created for a circular, three-electrode furnace. This model included a transient analysis of both the slag and matte as fluid layers through multi-phase modelling. User-defined AC current is applied along with energy sinks to resemble smelting and boundary conditions found on the actual unit. This model investigated stirring effects by natural convection within the bath and it was found that it distributes heat evenly through the slag and matte. The modelled current flow showed a large portion of the current to pass through the matte layer between electrodes.

Online publication date: Tue, 21-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com