Estimating parameters of the three-parameter Weibull distribution using a neural network
by Babak Abbasi, Luis Rabelo, Mehdi Hosseinkouchack
European J. of Industrial Engineering (EJIE), Vol. 2, No. 4, 2008

Abstract: Weibull distributions play an important role in reliability studies and have many applications in engineering. It normally appears in the statistical scripts as having two parameters, making it easy to estimate its parameters. However, once you go beyond the two parameter distribution, things become complicated. For example, estimating the parameters of a three-parameter Weibull distribution has historically been a complicated and sometimes contentious line of research since classical estimation procedures such as Maximum Likelihood Estimation (MLE) have become almost too complicated to implement. In this paper, we will discuss an approach that takes advantage of Artificial Neural Networks (ANN), which allow us to propose a simple neural network that simultaneously estimates the three parameters. The ANN neural network exploits the concept of the moment method to estimate Weibull parameters using mean, standard deviation, median, skewness and kurtosis. To demonstrate the power of the proposed ANN-based method we conduct an extensive simulation study and compare the results of the proposed method with an MLE and two moment-based methods. [Submitted 23 September 2007; Revised 11 December 2007; Second revision 22 December 2007; Accepted 10 January 2008]

Online publication date: Thu, 22-May-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the European J. of Industrial Engineering (EJIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email