Mining in-depth patterns in stock market
by Li Lin, Longbing Cao
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 4, No. 3/4, 2008

Abstract: Stock trading plays an important role for supporting profitable stock investment. In particular, more and more data mining-based technical trading rules have been developed and used in stock trading systems to assist investors with their smart trading decisions. However, many mined trading rules are of no interest to traders and brokers because they are discovered based on statistical significance without checking traders' interestingness concerns. To this end, this paper proposes in-depth data mining technologies to overcome the disadvantages of current data mining methods. We implement a decision support in-depth trading pattern discovery system with Robust Genetic Algorithms (RGA). The system integrates expert knowledge and considers domain constraints into the trading rule development. We further utilise this technique to mine actionable stock-rule pairs targeting behaviour with high return at low risk. The proposed approaches are tested in real stock orderbook data with varying investment strategies.

Online publication date: Fri, 22-Feb-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email