Experimental determination of heat transfer coefficients in uranium zirconium hydride fuel rod
by Amir Zacarias Mesquita, Hugo Cesar Rezende
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 3, No. 2, 2007

Abstract: The heat generated by nuclear fission is transferred from fuel elements to the cooling system through the fuel-to-cladding gap and the cladding-to-coolant interfaces. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were evaluated experimentally. A correlation for the gap conductance between the fuel and the cladding was also presented. As the reactor core power increases, the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the reactor core at power levels in excess of 265 kW.

Online publication date: Mon, 23-Jul-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com