Building a prediction model of solar power generation based on improved Grey Markov Chain
by Chongyu Cui; Zhaoxia Li; Junjie Zhang
International Journal of Global Energy Issues (IJGEI), Vol. 44, No. 2/3, 2022

Abstract: In order to improve the prediction ability and reliability management ability of solar power generation, a solar power generation prediction model based on Improved Grey Markov chain is proposed. The constrained parameter model of solar power generation prediction is established, and the disturbance characteristics of solar power generation are analysed. On this basis, the improved grey Markov chain model is applied to the big data fusion analysis of solar power generation, and the reliability prediction of solar power generation is realised. The results show that the prediction accuracy of this method is high, up to 1, which improves the quality and stability of output power, and has certain application value.

Online publication date: Thu, 10-Mar-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Energy Issues (IJGEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email