Action intention recognition of cars and bicycles in intersections
by Cristofer Englund
International Journal of Vehicle Design (IJVD), Vol. 83, No. 2/3/4, 2020

Abstract: Action intention recognition is becoming increasingly important in the road vehicle automation domain. Autonomous vehicles must be aware of their surroundings if we are to build safe and efficient transport systems. This paper presents a method for predicting the action intentions of road users based on sensors in the road infrastructure. The scenarios used for demonstration are recorded on two different public road sections. The first scenario includes bicyclists and the second includes cars that are driving in a road approaching an intersection where they are either leaving or continuing straight. A 3D camera-based data acquisition system is used to collect trajectories of the road users that are used as input for models trained to predict the action intention of the road users. The proposed system enables future connected and automated vehicles to receive collision warnings from an infrastructure-based sensor system well in advance to enable better planning.

Online publication date: Mon, 17-May-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email