K-means clustering combined with principal component analysis for material profiling in automotive supply chains
by João N.C. Gonçalves; Paulo Cortez; M. Sameiro Carvalho
European J. of Industrial Engineering (EJIE), Vol. 15, No. 2, 2021

Abstract: At a time where available data is rapidly increasing in both volume and variety, descriptive data mining (DM) can be an important tool to support meaningful decision-making processes in dynamic supply chain (SC) contexts. Up until now, however, scarce attention has been given to the application of DM techniques in the field of inventory management. Here, we take advantage of descriptive DM to detect and grasp important patterns among several features that coexist in a real-world automotive SC. Principal component analysis (PCA) is employed to analyse and understand the interrelations between ten quantitative and dependent variables in a multi-item/multi-supplier environment. Afterwards, the principal component scores are characterised via a K-means clustering, allowing us to classify the samples into four clusters and to derive different profiles for the multiple inventory items. This work provides evidence that descriptive DM contributes to find interesting feature-patterns, resulting in the identification of important risk profiles that may effectively leverage inventory management for improved SC performance. [Received: 5 April 2019; Revised: 1 December 2019; Revised: 22 January 2020; Accepted: 21 April 2020]

Online publication date: Tue, 06-Apr-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the European J. of Industrial Engineering (EJIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com