Attacking the Niederreiter-type cryptosystem based on rank metric
by Chungen Xu; Yingying Zhang; Lin Mei; Lei Xu; Cong Zuo
International Journal of Embedded Systems (IJES), Vol. 13, No. 4, 2020

Abstract: This paper deals with the Niederreiter cryptosystem based on Gabidulin codes which were solidly broken by Overbeck within polynomial time. In this paper, we first review the conditions under Overbeck's attack applications and then adjust corresponding parameters to target a high-security level. Since the permutation matrix and the scrambling matrix are used in Gabidulin codes, then the Frobenius matrices have too much structure to be hidden. By analysing the rank of the system matrix, we can find that choosing the matrix such that the dimension of the kernel of the public parity-check matrix greater than one will achieve a good result. In addition, we also show that bounding the rank of the distortion matrix is to enhance the security of the system. Finally, we give the security analysis of the modified Niederreiter type cryptosystem and demonstrate that it can resist structural and decoding attacks.

Online publication date: Tue, 27-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com