Wall effects in flow past a rigid stationary sphere enclosed in a rectangular channel
by Asterios Pantokratoras
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 5, 2020

Abstract: The effect of finite boundaries on the drag coefficient applied in a sphere enclosed in a rectangular channel has been investigated numerically. The three-dimensional Navier-Stokes equations along with continuity equation in Cartesian coordinates have been solved numerically. The investigation covers the Reynolds number range from 0.1 up to 300 and channel half width-to-sphere radius ratio R/r from low value to unconfined case. It is found that when the sphere is close to channel walls the flow is unsteady and when the sphere lies away from the walls the flow becomes steady for Re ≤ 200. For Re = 300 the flow is unsteady for confined and unconfined cases. For Re = 300, both the drag coefficient and Strouhal number decrease as the R/r ratio increases and reach a constant value at the unconfined state.

Online publication date: Tue, 29-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com