Proactive and reactive context reasoning architecture for smart web services
by Nawel Sekkal; Sidi Mohamed Benslimane; Michael Mrissa; Cheol Young Park; Boudjemaa Boudaa
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 12, No. 1, 2020

Abstract: The web of things (WoT) uses web technologies to connect embedded objects to each other and to deliver services to stakeholders. The context of these interactions (situation) is a key source of information which can be sometimes uncertain. In this paper, we focus on the development of intelligent web services. The main requirements for intelligent service are to deal with context diversity, semantic context representation and the capacity to reason with uncertain information. From this perspective, we propose a framework for intelligent services to deal with various contexts, to reactively respond to real-time situations and proactively predict future situations. For the semantic representation of context, we use PR-OWL, a probabilistic ontology based on multi-entity Bayesian networks. PR-OWL is flexible enough to represent complex and uncertain contexts. We validate our framework with an intelligent plant watering use case to show its reasoning capabilities.

Online publication date: Fri, 06-Mar-2020

  Open Access Article - Free full text Access Free full text access

If you still need assistance, please email