Classifiers for Arabic NLP: survey
by Marwan Al Omari; Moustafa Al-Hajj
International Journal of Computational Complexity and Intelligent Algorithms (IJCCIA), Vol. 1, No. 3, 2020

Abstract: In this paper, we reviewed most common-used models and classifiers that used for the Arabic language to classify texts into categories, classes, or topics in tasks of opinion mining, sentence categorisation, part of speech tagging, language identification, name entity recognition, authorship attribution, word sense disambiguation, and text classification. Comparisons between classification tasks conducted in terms of models' performances and accuracies. Classification approaches are three types: lexicon-based, machine and deep learning, or hybrid ones. Research sample is 34 articles in the classification domain. Challenges facing the Arabic language discussed with further solutions: 1) solid research training on both approaches: lexicon-based and corpus-based (machine and deep learning); 2) research contribution mainly corpus, approach technique, and free accessibility; 3) fund increase to the research development in the Arab world.

Online publication date: Tue, 03-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Complexity and Intelligent Algorithms (IJCCIA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email