On providing on-the-fly resizing of the elasticity grain when executing HPC applications in the cloud
by Rodrigo Da Rosa Righi; Vinicius Facco Rodrigues; Luiz Felipe Da Silva Cunha; Cristiano André Da Costa
International Journal of Computational Science and Engineering (IJCSE), Vol. 20, No. 4, 2019

Abstract: Today, we observe that cloud infrastructures are gaining more and more space to execute high-performance computing (HPC) applications. Unlike clusters and grids, the cloud offers elasticity, which refers to the ability to increase or reduce the number of resources (and consequently, processes) to support, as closely as possible, the needs at a particular moment of the execution. To the best of our knowledge, current initiatives explore the elasticity for HPC applications by always handling the same number of resources at each scaling-in or scaling-out operation. This fixed elasticity grain commonly results in a stair-shaped behaviour, where successive elasticity operations take place to address the load curve. In this context, this article presents GrainElastic, an elasticity model for executing HPC applications with the capacity to adapt the elasticity grain to the requirements of each elasticity operation. Its contribution involves a mathematical formalism that uses historical execution traces and the ARIMA time-series model to predict the required number of resources (in our case, VMs) to address a reconfiguration point. Based on the proposed model, we developed a prototype that was compared with two other scenarios: 1) non-elastic application; 2) elastic middleware with a fixed grain. The results presented gains of up to 30% using GrainElastic, which demonstrates the relevance of adapting the elasticity grain to enhance system reactivity and performance.

Online publication date: Sun, 12-Jan-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com