Superpixel-based Zernike moments for palm-print recognition
by Bilal Attallah; Amina Serir; Youssef Chahir; Abdelwahhab Boudjelal
International Journal of Electronic Security and Digital Forensics (IJESDF), Vol. 11, No. 4, 2019

Abstract: In the contemporary period, significant attention has been focused on the prospects of innovative personal recognition methods based on palm-print biometrics. However, diminished local consistency and interference from noise are only some of the obstacles that hinder the most common methods of palm-print imaging such as the grey texture and other low-level of the palm. Nevertheless, the development of the process and tackling of the obstacles faced have a potential solution in the form of high-level characteristic imaging for palm-print identification. In this study, Zernike moments are used for acquiring superpixel features that are spiral scanned images, which is an innovative recognition method. By using the extreme learning machine, the inter- and intra-similarities of the palm-print feature maps are determined. Our experiments yield good results with an accuracy rate of 97.52 and an equal error rate of 1.47% on the palm-print PolyU database.

Online publication date: Tue, 04-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electronic Security and Digital Forensics (IJESDF):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email