International Journal of Arts and Technology
- Editor in Chief
- Prof. Athanasios Vasilakos
- ISSN online
- 1754-8861
- ISSN print
- 1754-8853
- 4 issues per year
- Clarivate Analytics 2022 JCI 0.06
- CiteScore 0.6 (2021)

IJART addresses arts and new technologies, highlighting computational art. With evolution of intelligent devices, sensors and ambient intelligent/ubiquitous systems, projects are exploring the design of intelligent artistic artefacts. Ambient intelligence supports the vision that technology becomes invisible, embedded in our natural surroundings, present whenever needed, attuned to all senses, adaptive to users/context and autonomously acting, bringing art to ordinary people, offering artists creative tools to extend the grammar of the traditional arts. Information environments will be the major drivers of culture.
Topics covered include
- New media arts, science and technology
- Interactive/visual theatre, neurobiological base of acting, digital/wearable cinema
- Augmented performance in dance
- Artificial intelligence-based art practice, web art and postmodernism
- Using analysis of artworks in conjunction with AmI to produce novel objects
- Using AmI to promote the creativity of a human user
- Autonomic sensor networks and wearable computers in the performing arts
- Computer vision and optical tracking for music and dance performance
- Cognitive intelligence and natural intelligence for the arts
- Collaborative distributed environments
- Evolutionary art systems that create drawings/images/animations/sculptures/poetry/text
- Evolutionary music systems that create musical pieces/sounds/instruments/voices
- Choreographing media for interactive virtual environments
- New media actors, new media aesthetics
- Social and ethical issues in the arts and technology
Objectives
The objectives of IJART are to address new works, research and performances in the multi-disciplinary emerging area of new technologies and the arts - and to provide a common platform under which this artwork can be published and disseminated. IJART provides a high-quality platform for this purpose.
Readership
IJART provides a vehicle to help professionals, academics, researchers ,artists, museum curators, and graduate students working in the field of arts and technology, to disseminate information and to learn from each other's work.
Contents
IJART publishes original research papers, review papers, artworks, performances, conference reports, book reviews, notes, commentaries, and news. Special Issues devoted to important topics in the arts and new technologies will occasionally be published.
Editor in Chief
- Vasilakos, Athanasios, Lulea University of Technology, Sweden
(th.vasilakosgmail.com)
Managing Editors
- Wan, Jiafu, South China University of Technology, China
- Xia, Zhihua, Nanjing University of Information Science and Technology, China
Editorial Board Members
- Brooks, Tony, Aalborg University, Denmark
- Chen, Min, Seoul National University, South Korea
- Cheok, Adrian David, National University of Singapore, Singapore
- Draisin, Maya, International Academy of Digital Arts & Sciences (IADAS), USA
- El-Nasr, Magy Seif, Simon Fraser University, Canada
- Fisher, Scott S., University of Southern California, Los Angeles, USA
- Fishwick, Paul, University of Florida, USA
- Grau, Oliver, Danube University, Austria
- Gross, Tom, University of Bamberg, Germany
- Hu, Jun, Eindhoven University of Technology, Netherlands
- Inakage, Masa, Keio University, Japan
- Ishii, Hiroshi, MIT Media Laboratory, USA
- Kato, Hirokazu, Nara Institute of Science and Technology, Japan
- Lee, Newton, Institute for Education, Research, and Scholarships, USA
- Maes, Patti, MIT Media Laboratory, USA
- Marranca, Bonnie, PAJ Publications, USA
- Natkin, Stéphane, Conservatoire National des Arts et Métiers, France
- Pan, Zhigeng, Zhejiang University, China
- Pentland, Alex (Sandy), MIT Media Laboratory, USA
- Rokem, Freddie, Tel Aviv University, Israel
- Salem, Ben, Kwansei Gakuin University, Japan
- Sarfraz, Muhammad, Kuwait University, Kuwait
- Selker, Ted, MIT Media Laboratory, USA
- Shu, Lei, Guangdong University of Petrochemical Technology, China
- Vercoe, Barry, MIT Media Laboratory, USA
- Wilson, Stephen, San Francisco State University, USA
- Xiong, Neal Naixue, Colorado Technical University, USA
- Yang, Bin, Jiangnan University, China
- Yang, Jian, Shanghai Conservatory of Music, China
A few essentials for publishing in this journal
- Submitted articles should not have been previously published or be currently under consideration for publication elsewhere.
- Conference papers may only be submitted if the paper has been completely re-written (more details available here) and the author has cleared any necessary permissions with the copyright owner if it has been previously copyrighted.
- Briefs and research notes are not published in this journal.
- All our articles go through a double-blind review process.
- All authors must declare they have read and agreed to the content of the submitted article. A full statement of our Ethical Guidelines for Authors (PDF) is available.
- There are no charges for publishing with Inderscience, unless you require your article to be Open Access (OA). You can find more information on OA here.
- All articles for this journal must be submitted using our online submissions system.
- View Author guidelines.
Submission process
Journal news
Framing artistic style with AI
27 January, 2023
Research in the International Journal of Arts and Technology has looked at how generative adversarial networks (GANs) might be used to transform an artistic image with a given style into a similar image with a different style. For example, a Western abstract transformed into a Chinese figurative image. Tests with this type of artificial intelligence, AI, and the results of questionnaires about the generated art reveal how people in the East and West might perceive artistic style differently when presented with such images. The work might also help us understand art appreciation, concept of beauty and whether or not AI can somehow "understand" art in a parallel manner. Mai Cong Hung of Osaka University and Ryohei Nakatsu, Naoko Tosa, and Takashi Kusumi of Kyoto University, Japan, explain how a new paradigm in AI – big data + deep learning – has emerged. This approach to AI is developing rapidly with many positive results and benefits to those in the field and beyond. There is always the underlying notion that given that the neural networks used in AI are based on our brains there might be some parallels with how these networks function with our own thought processes. Indeed, AI has surpassed human ability in some areas, for instance in playing Shogi (Japanese chess) and Go. These are games of logic and planning but the question arises as to whether AI can compare in terms of creativity and art [...]
More details...