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1 Introduction 

Cognitive biometrics is a novel approach to user authentication and/or identification that 
utilises the response(s) of nervous tissue. The approach relies on the presentation of one 
or more stimuli, and the subsequent response(s) are acquired and used for authentication 
– a typical stimulus-response paradigm. The stimulus could be the presentation of a 
familiar photograph, a song, or a Rorschach ink blot, either individually or in various 
combinations. The stimulus is designed to induce a specific and reproducible change(s) 
in the (or a set of) state(s) of the individual. These reproducible changes can be recorded 
by a variety of methods – which currently include the electroencephalogram (EEG), the 
electrocardiogram (ECG), the electrodermal response (EDR), blood pulse volume (BVP), 
near-infrared spectroscopy (NIR), electromyogram (EMG), eye trackers (pupilometry), 
hemoencephalography (HEG), and related technologies. As with other forms of 
biometrics, issues such as reproducibility and uniqueness of the stimulus-response 
mappings must be acquired experimentally in order to quantify the reliability of a novel 
biometric paradigm. In the case of cognitive biometrics, the responses are changes in the 
(neuro)physiology of the subject, which are embedded in a continuous flow of ongoing 
dynamics (cognitive and/or physiological). The stimulus must elicit a response within 
this ongoing stream of activity that is both detectable and reliable. Further, the approach 
is constrained temporally (a few seconds is a suitable authentication time frame) and the 
technology must not be overly obtrusive (a wearable or lie detector test set-up is not 
practical nor acceptable).  

The motivation for this approach is to provide a more intuitive and arguably a more 
robust and user-friendly authentication protocol that is suitable for both static and 
continuous authentication requirements. In addition, the cognitive approach can be 
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combined with physiological approaches such as keystroke/mouse dynamics for 
example, augmenting the feature space and providing a truly multi-modal approach. 
Since cognitive biometrics deploys a much broader range of inputs for authentication 
(visual, auditory, olfactory, or any combination), a much larger variety of authentication 
approaches can be deployed. For instance, a user can be authenticated while playing a 
game for a short interval as opposed to entering their user ID and password. In addition, 
the future of human-computer interaction (HCI) may very well deploy a much wider 
range of interaction methodologies – such as speech, hand gestures, facial expressions, 
all of which possess some measure of the emotional and/or cognitive state of the user. 
Further, they tap into the same aspects of human behaviour that cognitive biometrics 
utilises – providing a natural link with a cognitive biometrics based mode of 
authentication (implementable over a range of computing platforms).  

Cognitive biometrics has the daunting task of providing evidence to the relevant 
community at large that it is a viable alternative to anatomical and behavioural 
biometrics. It must be demonstrated that it provides robust classification accuracies 
(exceeding 95%), without expensive and costly hardware, and must be readily accepted 
by the user community. In addition, the approach must be deployable in both a static and 
continuous fashion for maximal utility. The purpose of the International Journal of 
Cognitive Biometrics is to provide a forum for researchers to present their results to the 
relevant public at large. This inaugural issue presents several papers that focus on a wide 
variety of issues associated with implementing cognitive biometrics – focusing on factors 
such as acquirability, persistence, generalisability, and deployment issues. A brief 
description of each of the papers in this issue will be discussed, followed by what the 
editorial board members believe is an appropriate direction for this approach to follow in 
order to become successful.  

2 Paper summaries 

Nakayama and Abe’s paper investigated the feasibility of classifying characters (Kanji 
characters) viewed by subjects (native Japanese) using single-trial Electroencephalogram 
(EEG) waveforms of the frontal and occipital areas of the brain (total of 21 electrodes, 
referenced to the ear lobe). This is a classic example of a lexical analysis task. As a 
training data set, event-related potentials (ERP) were created for each character from the 
first 20 trials, and the remainder was assigned to a test data set. To extract features of 
waveforms, a regression relationship between EEG and ERP waveforms was calculated 
from the training data set using the Support Vector Regression technique. Feature vectors 
for each trial were created as EEG waveforms from 100 to 800 msec after stimulus 
presentation. The classification performance, measured as cross-validation rates 
(fivefold) of the test data set for each channel, increased incrementally during the 
perceptual process when the transformed waveforms were used. In addition, the 
performance rates increased when the classification was conducted using a combination 
of multiple electrodes located in the same area of the brain. These results provide 
evidence of a correlation between single trial EEG and ERPs in the context of Kanji 
character detection. Furthermore, the correlation is strengthened when multiple 
electrodes from the same cortical region are acquired simultaneously. 
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The principle results from this study can be summarised as follows:  

1 that single trial EEG recordings, when recorded either at the Oz (at 300 ms) or Fz  
(at 500 ms) electrodes are able to provide information regarding the nature of the 
stimulus (in this case either a proper Kanji symbol or not using a single channel 

2 increasing the density of channels either in the frontal or occipital poles enhanced  
the classification accuracy, within the same time scales as the single channel results 
(300 and 500 ms respectively for Oz and Fz) 

3 that regression analysis between ERPs and single channel EEG provides a 
mechanism for reducing the amount of data required for performance of a lexical 
analysis task.  

More generally, these results indicate that a relatively short sampling time is required to 
provide reliable ERP data – in this case, 40 trials (each lasting 2 s on average) was 
sufficient for training, with testing occurring at the single trial level. The information 
content of both the single trial EEG and resulting training set derived ERP data were 
enhanced through the SVR technique. In addition, the results demonstrated that the time 
required for maximal correlation was lower for Oz electrodes (@ 300 ms) versus Fz 
electrodes (@ 500), consistent with the role these two brain regions have in a visual 
lexical analysis task.  

Gupta, Palaniappan and Paramesran investigated the deployment of the P300 
paradigm in terms of its suitability as a cognitive biometrics. Specifically, they 
investigated the role of distracters (via the popular Rapid Serial Visual Paradigm; RSVP) 
and stimulus position effects (via a specially designed a Spatially Varying Paradigm) on 
the reproducibility of latency and amplitude features of the P300. The investigation was 
carried out using both male and female subjects (aged 22–30) under conditions 
appropriate for a typical BCI based P300 experimental set-up. A four-category (the 
letters ‘A’, ‘B’, C’, and ‘D’) were presented to the subjects in one of three conditions: 
basic odd-ball paradigm, the RSVP, and the Spatially Varying Paradigm. The tasks 
required users to focus visual attention at selected portions of the screen and make note 
of the occurrence of certain letters (‘A–D’), and to make a mental count of the number of 
times a particular letter appeared. In the standard oddball paradigm, characters would 
appear at fixed locations and an eye-tracker could record the gaze of the subject and 
potentially replicate the actions of a valid user. To counteract this scenario, the stimuli 
were presented at various spatial locations, with the same frequency as the standard 
oddball approach. This would render eye tracking much less effective. In addition, the 
authors also investigated temporal disparities as an alternative approach to eye tracking 
hacking. In this scenario, the presentations were maintained at fixed locations, but would 
be presented at random time intervals, between which the subject would typically change 
their gaze slightly. The results of this experiment demonstrate that the temporal approach 
(RSVP) was the most effective strategy to counteract shoulder surfing and its variants 
(eye tracking). The system produced 100% accuracy across all eight subjects with the 
RSVP approach, which was slightly higher than both the standard odd-ball and the 
Spatially Varying Paradigm.  

In the paper by Israel and Irvine, the deployment of ECG was utilised as a biometric. 
This paper surveys much of the current ECG-based biometrics literature, emphasising the 
role(s) of factors that influence the reliability of ECG in terms of its usage as a biometric 
paradigm. The authors explore both external factors (environmental and sensor variants) 
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as well as subject factors such as their emotional state, health, and related issues. The 
studies surveyed in this paper suggest that accuracies of close to 100% can be achieved 
with cooperative subjects. There are several factors that affect the reliability of an ECG-
based approach that the authors highlight:  

1 temporal stability (months to years after enrolment) 

2 how the affective state of the subject influences the classification task 

3 scalability of the approach. 

The temporal stability of a subject’s heartbeat (ECG signal) will potentially be influenced 
by a variety of factors – such as state of health and/or the affective state, i.e. whether they 
feel anxious or depressed for instance. This is the central issue that requires addressing 
within the cognitive biometrics community – quantifying how the affective and/or 
cognitive state (in EEG-based biometrics in particular) influences the underlying 
biosignal (ECG/EEG/and others such as the EDR. The temporal stability and 
generalisability issues are also key issues in both behavioural (i.e. keystroke dynamics) 
and cognitive biometrics, which is addressed in the paper by Tantawi et al. (this issue). 

Tantawi and colleagues investigated the temporal stability and generalisability of the 
PhysioNet ECG data repository. This data repository contains ECG subject records from 
well over 100 individuals, with a variety of medical conditions, recorded over 1 day to 
several years apart. The paper describes a typical ECG processing pipeline on datasets 
acquired from PhysioNet, investigating the overall generalisability of this data repository, 
as well as addressing issues such as scalability. The first step in ECG processing is 
feature extraction, and the authors deployed a fiducial based approach, where visually 
apparent features such as the three principal modes (P, QRS, and T waves) are 
automatically extracted. These features are quantified and used for classification 
purposes in a supervised training methodology. In order to evaluate the generalisability 
of the dataset, records from one of the four data sets was used for training, and tested on 
records selected randomly from the other three data sets. This process was repeated such 
that each data set provided training samples, and the resulting classifier was tested on 
records selected from all the remaining data sets. These results generated classification 
accuracies on the order of 100% for subject recognition, and slightly lower values for 
heart beat recognition (83% in 1 or 2 instances, 100% for the remaining). This is a 
significant step towards establishing a schema for evaluating the generalisability of a 
biometric. Typically, many ECG-based biometric studies (or biometrics studies 
generally) are developed from small subject trials (5–20 subjects). Further, the testing 
phase is typically performed on the same data (records are held back for testing purposes) 
– but few apply their trained system to completely novel data sets. That the classification 
results were relatively independent of the training/testing data sets indicates that the 
approach used in this paper possesses significant generalisability. Furthermore, many of 
the records were test-retest cases, with intervals ranging from <24 hours (multiple 
recordings on the same day) or more than 1 year apart. This provides the opportunity to 
evaluate the developed ECG-based biometric schema in terms of temporal stability. The 
classifier was trained using records selected randomly, and tested on records selected 
from either the same day (≤24 hours) or from records acquired several months to years 
apart (and vice versa). The subject classification accuracy was stable and did not suffer 
from the lack of temporal correlation, though there was a slight degradation in the 
heartbeat recognition accuracy. These results suggest that the schema developed in this 
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work did possess generalisability and temporal stability required for deployment in a 
realistic manner. That is, subjects would not be required to re-enrol at a frequency that 
would be considered obtrusive.  

3 Discussion 

These papers provide examples of successful implementations of the cognitive biometrics 
approach. Even though they focused on ECG and EEG, there is no reason why the same 
basic methodology could not be applied to other biosignals such as EDR (the basis of the 
classic lie detector test), blood pulse volume (BVP), which provides a scaled down 
version of ECG data, near infrared spectroscopy (which can provide information 
regarding blood flow and oxygen saturation), pupilometry, and hemoencephalography 
(which combines EEG and NIR). There are two aspects that need addressing when 
presenting evidence of a ‘cognitive biometric’: one that the system is actually and 
purposely utilising cognitive aspects of individuals and the other, that the approach fits 
within the ‘biometrics’ domain. The former question will be addressed at the end, and 
attention is now turned to the ‘biometric’ component. To qualify as a biometric, most 
authors state that the following requirements must be met: (a) acquirability, (b) 
uniqueness, (c) persistence, and (d) must be difficult to spoof. Without going into 
significant detail, these issues will be addressed in order.  

The technology exists to acquire a wide variety of biosignals – the first ECG was 
developed in the late 1890s, the first human EEG was reported in 1929, while Féré and 
Tarchanoff developed the scientific basis for the galvanic skin response (Tarchanoff’s 
‘psychogalvanic reflex’) (Féré, 1888; Tarchanoff, 1890; Berger, 1929). The technology 
has developed over the past century, largely driven by the needs of the medical and 
psychological communities. With only a slight modification, the technology can be 
tailored to suit the biometrics community directly, driven by market needs. This is indeed 
happening as we speak – a cursory search on the internet will reveal several companies 
actively developing dry EEG electrodes – which are designed to work without 
conductive gels and skin preparations. In addition, the number of electrodes can be 
reduced from that required for quantitative analysis as is the rule in QEEG approaches. 
As the studies in this issue have indicated, virtually perfect classification accuracy can be 
achieved with a single electrode. The same basic processes have been at work with ECG 
– which do not require 12-lead systems. In our lab, a basic 3-electrode system, placed on 
the wrists, is more than sufficient to develop a highly accurate person authentication 
system. As such systems find their way into the entertainment industry (computer/ 
console games) – there is no doubt that the technology will be tailored to small footprint 
and convenient implementations.  

That everyone has a working heart and functioning brain is without doubt – so 
acquirability is typically not an issue – providing the technology is suitable in terms of 
user acceptance. In our studies, subjects state that the attachments of ECG electrodes on 
the wrist, EMG on the face, and GSR electrodes on the palmar surfaces are not overly 
restrictive and annoying, though this may be subject dependent. Overall, acquirability is 
simply a matter of convenience rather than biological plausibility. 

Uniqueness is an issue that needs addressing – and is probably the most reported 
reason for non-cognitive biometric practitioners to reject this approach. When discussing 
cognitive biometrics in the context of more traditional strategies such as finger prints and 
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iris scanners, colleagues state that the ECG is not a true biometric because of its inherent 
variability. For instance, if someone is stressed, their ECG changes and hence does not 
possess the constancy required in biometrics. That this is true is without doubt – there is 
variability in the ECG. It is known to vary with the emotional state of a subject. But, like 
a fingerprint, which typically requires some form of affine transformation prior to the 
application of the matching algorithm, cognitive biometrics makes the claim that the 
same process applies to an ECG record. What is required is a careful analysis of the 
impact emotion plays on the ECG recording – an area that is lacking in the literature. 
Clearly, stimuli can be produced that elicits a particular emotional state. If the ECG is 
recorded across a variety of emotional states, changes in the ECG record associated with 
each emotional state can be quantified and compared with a ‘control’ state record. If the 
differences can be quantified according to an appropriate feature space, then one could 
actually estimate the emotional state of the subject. Further, the impact of emotional state 
could be removed from the record, leaving the ‘normal’ ECG, performing the equivalent 
of an affine transformation. The same basic strategy holds for EDR and possibly related 
technologies such as NIR and BVP. 

Although most studies deploying EEG as a means of user identification for example 
have found ample dimensionality in the data stream, a heretofore unexplored aspect of 
biosignals may be discoverable by applying the ‘endophenotype’ concept. This term was 
introduced in the early 1970s to describe a discrete genetically transmittable feature that 
is associated with a particular phenotype (disease states or clinical condition such as 
schizophrenia or ADHD). The key feature is that there is a heritable genotypic feature 
that is associated with a given phenotype – that is transmissible via a Mendelian type of 
mechanism, which is statistically more prevalent in genetically related individuals than in 
the general public (Gottesman and Shields, 1972; Gottesman and Gould, 2003; de Geus, 
2010; Smit et al., 2010). A variety of endophenotypes have been identified: P50 pre-
pulse inhibition, the latency and amplitude of the P300 ERP, smooth-pursuit eye 
movement (SPEM), certain aspects of working memory tasks, and a variety of other 
features of virtually all recordable biosignals possess a significant degree of heritability 
(upwards of 90%) (Hanson et al., 1989; van Beijsterveldt et al., 1996; Anokhin et al., 
2001; Wright et al., 2001; Smit et al., 2005; Hall et al., 2006; Chorlian et al., 2007; 
Zietsch et al., 2007; Wan et al., 2008). A rational approach to the feature space of say an 
EEG-based biometric is to produce stimuli that would extract a response that has a 
significant genetic component to it (e.g. P300 amplitude and/or latency, EEG coherence). 
There are a variety of genetically determined aspects of EEG, ECG, and EDR that could 
be exploited to enhance the uniqueness of the feature space (Russell et al., 1998; Crider 
et al., 2004; Newton-Cheh et al., 2005; Crider, 2008). This is a major area of research 
that needs to be addressed – and will require the collective efforts from a variety of 
disciplines.  

Persistence refers to the temporal availability of a biometric feature, and is closely 
related to constancy – so both will be addressed as a single entity. The results from the 
study by Tantawi et al. (in this issue) indicate that the ECG appears to be stable over a 
period of at least 1 year. Whether or not this is an upper limit is an empirical question 
that remains to be settled. The temporal stability of EEG was investigated by Gupta et al. 
(in this issue), and their results demonstrate that aspects of EEG persists for 3 months, 
provided 2–3 electrodes are deployed. Again, whether this is an upper bound remains to 
be determined. By persistence is implied constancy – that a feature yields the same basic 
quantitative footprint over time. The results in the literature suggest that many of the 
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features deployed in cognitive biometrics are persistent. We would argue that if the 
features were selected based on a genetic endowment basis, the persistence (and 
constancy) would extend to rational limits suitable for a biometric approach. This is a 
major research area that needs to be explored fully before final decisions in this regard 
can be made with certainty – but clearly the results indicate that this is not a deterrent. 

Lastly, resistance to spoofing and related attacks is an issue that all biometric systems 
must be aware of. Clearly, the liveliness test is passed by a cognitive biometric approach 
(e.g. EEG, ECG, EDR, etc.) Could someone acquire a person’s ECG and play it back? 
Certainly, but to counter this attack, the stimulus must be designed with considerable 
variation in mind. As mentioned previously, the wealth of stimuli suitable for cognitive 
biometrics provides a wealth of authentication schemes – game playing, listening to 
music, short video clips, as well as more traditional behavioural biometric approaches 
provide virtually an infinite amount of input stimuli for use as an authentication scheme. 
This holds for both static and continuous authentication modes – though the later 
provides many more opportunities to validate the user under a wide variety of stimulus 
challenges. This is one of the major advantages of the cognitive approach compared to 
anatomical biometrics such as finger prints and retinal scans. Further, this approach may 
suit more closely future person–computer interaction schema that may attempt to 
minimise traditional input devices such as keyboards and mice. As Julia Thorpe and 
colleagues proposed in 2005 – authenticating with our minds might be a reality in the 
near future – and certainly emotion based interactive gaming is already here (Thorpe  
et al., 2005). 

In summary, cognitive biometrics is a novel approach to user authentication and/or 
identification that relies on the cognitive and affective responses of users, which are 
acquired via biosignal acquisition and psychological testing paradigms. Provided the 
proper stimuli are presented, the stimulus-response paradigm provides a powerful 
methodology for evaluating the authenticity of the subject requesting authentication. The 
concept of the endophenotype is central in this approach – as it provides a scientific basis 
for selecting stimuli, designed to elicit responses that have high heritability.  

The next issue of the International Journal of Cognitive Biometrics will focus on the 
deployment of the EEG, one of the most heritable aspects of human physiology, as a 
means of user authentication. Pursuant to this aim, we seek to form a collaboration with 
the cognitivists and clinical geneticists, behavioural geneticists, amongst other 
disciplines, who are working from both ends towards the middle to produce a holistic 
approach to defining the interrelationships between cognition/affect and the underlying 
(patho)physiology (see de Geus and Boomsma, 2001 for a broader discussion of this 
approach). The cognitive biometrics community on the other hand is seeking 
cognitive/affective aspects of human physiology that are unique. The advantage this 
community provides is that experiments are performed within a scenario that directly 
determines the uniqueness of the feature(s). Most quantitative genetics studies are 
performed within well controlled and restrictive conditions, such as large MZ and DZ 
twin cohorts and possible singletons, reared together or apart (Russell et al., 1998; Crider 
et al., 2004; Newton-Cheh et al., 2005; Chorlian et al., 2007). This is required in order to 
quantify environmental and epigenetic factors. Ultimately though, the real test is to 
determine whether the identified features (endophenotypes) hold up in a large-scale 
examination, involving potentially tens of thousands of randomly selected subjects. Only 
then will the actual heritability of the feature(s) be explored sufficiently in order to render 
reliable estimates of heritability. Further, these types of studies in the context of 
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biometrics may provide evidence of heretofore unknown endophenotypes. This is a clear 
case for a symbiotic relationship here that can be developed which will inform both 
communities. We at the International Journal of Cognitive Biometrics strongly encourage 
researchers in all relevant domains to submit work that demonstrates that there is a clear 
path for collaboration and help to instantiate cognitive biometrics as a truly innovative 
and future minded approach to computer security. 
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