
Int. J. Computational Science and Engineering, Vol. 4, No. 4, 2009 221

Copyright © 2009 Inderscience Enterprises Ltd.

Preface

Hans Petter Langtangen
Simula Research Laboratory,
P.O. Box 134,
NO-1325 Lysaker, Norway

Department of Informatics,
University of Oslo,
P.O. Box 1080, Blindern
N-0316 Oslo, Norway
E-mail: hpl@simula.no

Michael Thuné
Department of Information Technology,
Uppsala University,
P.O. Box 337,
SE-751 05 Uppsala, Sweden
E-mail: michael.thune@it.uu.se

Biographical notes: Hans Petter Langtangen is a Professor of Mathematical Modelling
at the Department of Informatics, University of Oslo, and a director of the Centre for
Biomedical Computing at Simula Research Laboratory. His research concerns numerical
methods for partial differential equations, scientific software, and applications to problems
in mechanics. He is a principal developer of Diffpack, a software framework for solving partial
differential equations, and the author of several books on mathematical modelling
OG scientific programming.

Michael Thuné is a Professor of Scientific Computing at the Department of Information
Technology, Uppsala University. While his work in early years concerned development
of numerical methods, he has over a period of almost two decades built a research group
performing fundamental research on how to design software frameworks that significantly
simplify the implementation of numerical methods for solving partial differential equations on
parallel computers.

Software is a crucial prerequisite for Computational
Science and Engineering (CSE). However, while other key
ingredients such as mathematical modelling and numerical
analysis are regarded as research areas, it is not as widely
recognised that the construction of software for CSE gives
rise to highly important research issues.

“Software Issues in Computational Science and
Engineering” was the theme of a workshop at Uppsala
University, Sweden, 15–16 August, 2007. The event was
organised jointly by Uppsala University and Simula
Research Laboratory and was held in conjunction with the
annual meeting of IFIP Working Group 2.5 (‘Numerical
Software’). See http://www.it.uu.se/research/conf/SCSE07
for more information.

The workshop addressed challenging research
issues regarding software for numerical computations.
Ideally, adaptation to new applications should be flexible,
and extension to incorporate new numerical techniques
straightforward. At the same time the software should
execute extremely efficiently on various high-performance
computing platforms. Accuracy and robustness are other

key features. Complicated scientific software should also
be easy to use to solve scientific or engineering
problems. The overall challenge is to find ways to construct
numerical software so that all these different goals are met
simultaneously. The workshop provided a forum for
researchers to present recent advances in this area.

This special issue of IJCSE contains papers based
on some of the material presented at the workshop.
The contributions can broadly be grouped into three
themes: Software Engineering/Architecture; Implementation
for Efficient Execution of Software; and Automatic
Software Construction.

The Software Engineering/Architecture theme is
addressed in the first three contributions. One key aspect
of software engineering is to design software architectures
that reduce the costs for implementation, modification,
and maintenance of software. In this context the concept
of ‘software framework’ is central.

One characteristic feature of a software framework
is that it should support variability, to allow for construction
of a variety of specific programs. The aspects that can

222 H.P. Langtangen and M. Thuné

be varied within the framework are known as its ‘variation
points’. The contribution by Haveraaen and Friis is an
argument for ‘coordinate-free numerics’ as an elegant way
to achieve the variability required in a software framework
for numerical solution of partial differential equations.

Software for Finite Element-based numerical solution
of partial differential equations can be divided into a
general-purpose library part and a problem-specific part.
The paper by Alnaes et al. presents a unified framework to
handle the interface and communication between the two
parts. Such interfaces, if adopted as a standard, may ease the
integration of different types of Finite Element software.

Due to the importance of software in CSE, training
of future CSE specialists should include experience
with realistic software engineering issues. At TU München,
the developers of a CSE education has taken this into
account by designing a project course where students
develop software for scientific computing. The paper by
Bader et al. gives a ‘practice and experience’ presentation of
this initiative.

The theme of efficient implementation is addressed in
the next three papers. A current trend is to enhance the
performance of numerical software by carrying out all or
parts of the computations on Graphics Processor Units
(GPUs). How to utilise GPUs in a programmer-friendly way
and thereby increase the computational efficiency is the
focus of the contribution by Gödekke et al.

Recent advances in processor architectures, based on the
introduction of multiple cores, present both possibilities and
challenges for developers of CSE software. In their paper,
Wallin et al. give an overview of the issues involved.

One key to high performance in numerical comptuations
is to represent data in a way that can make efficient use of
the computer memory hierarchy and parallel memory units.
In software for numerical solution of partial differential
equations, the key data structure is the computational
mesh. Logg’s paper is about a general-purpose C++ mesh
class with a storage scheme that allows for both convenient
representation of a variety of mesh types and efficient
computations with the mesh data.

The final three papers of this special issue address
the theme of automatisation. One aspect of this is to
provide automatic support for multi-language programming.

Multi-language programming is an old idea that has attained
renewed interest recently as a consequence of component
based software design, where different components can
be developed in different languages. For example, it is quite
common to develop low-level numerical components
in Fortran or C while components for higher-level
coordination are implemented in some language more suited
to that purpose. In order for these different components
to interact smoothly there is need for some kind of
automatic support. The paper by Peterson presents one such
automatisation effort, for connecting Python and Fortran
components.

Automatisation is not least useful for those parts of
software development that are highly non-trivial to carry out
by hand. Parallelisation is an example. Pflaum and Rahimi
describes how to use C++ template techniques to automatise
that task in a tricky case: staggered grid-based computations
for numerical solution of partial differential equations.

The final contribution of this special issue closes the
loop by connecting the theme of automatisation to the topic
of software frameworks discussed in the first two papers
of the issue. In the design of software frameworks, there
is a conflict between efficient execution on one hand
and flexibility for the user on the other. For efficient
execution, it is preferable that all decisions about specific
choices at variation points are made no later than at
compile-time, thus allowing for the compiler to make
efficient optimisations. On the other hand, the user will have
more flexibility if the decisions can be delayed until
run-time. In frameworks based on statically compiled
languages this represents a challenging conflict. Quintino
and DeConinck describe a way to overcome the conflict in a
C++-based framework, by using template-based techniques
and run-time compilation to delay decisions until run-time,
while still producing highly efficient executable code.

The three themes covered by the special issue are
strongly interrelated. The main challenge for developers of
CSE software is to construct accurate and robust software
that simultaneously meets the two conflicting goals of high
human efficiency at application development-time and high
performance at run-time. We hope that the readers of this
special issue will get a good overview of issues involved in
this exciting area of research.

