
Int. J. Computational Science and Engineering, Vol. 4, No. 1, 2008 1

Copyright © 2008 Inderscience Enterprises Ltd.

Preface

Michael Bader and
Hans-Joachim Bungartz
Institut für Informatik,
TU München, Germany
E-mail: bader@in.tum.de
E-mail: bungartz@in.tum.de

Ulrich Rüde
Technische Fakultät der
Universität Erlangen-Nürnberg, Germany
E-mail: ruede@informatik.uni-erlangen.de

Biographical notes: Michael Bader is senior research assistant at the chair of Scientific
Computing in Computer Science (SCCS) at TU München (TUM). He received a PhD in
Informatics at TUM in 2001. His research interests include hardware-aware algorithms in
scientific computing based on space-filling curves.

Hans-Joachim Bungartz is Professor of informatics and mathematics and Head of the Scientific
Computing chair in TUM’s Department of Informatics. His main fields of interest comprise CSE,
scientific computing (with a focus on efficient discretisations for PDE and fast solvers), and high
performance computing.

Ulrich Rüde is Professor in the Department of Computer Science at University
Erlangen-Nuremberg and Head of the Chair for System Simulation. His fields of interest include
high performance computing, computational science and engineering, and adaptive multilevel
algorithms.

Many simulation tasks in science and engineering are
computationally very intensive. More complex models
entailing more degrees of freedom not only require more
available space in memory, but also demand faster and
faster machines to compute solutions to these models within
an acceptable time frame.

The recent trends in hardware development have added
additional challenges to this scenario, because today’s
codes no longer guarantee to exploit the performance of
next-generation hardware to a satisfying degree:

• The so-called memory wall, i.e., the increasing
performance gap between memory access and
processor speed, forces scientific computing software to
deal with the efficient use of hierarchies of cache
memory.

• Multicore, hyperthreading, and similar keywords reflect
the current trend towards having more than one
processor core on a single CPU. However, only
simulation codes that allow for such fine-level
parallelism will be able to exploit the theoretical
performance gain.

• HPC systems are often no longer vector computers
only, or multiprocessor computers only, but more likely
of a hybrid architecture, which again poses additional
demands to the programmer.

Hence, it is no longer sufficient for a simulation code to
show an optimal efficiency in the classical O(n)- or O(h)-
type efficiency considerations. We also need to make sure
that algorithms can be efficiently mapped to the underlying
hardware; we need to make sure that the given memory,
CPU performance, and parallelism are exploited in an
optimal way; and finally, we have to keep in mind that a
scientist should be able to produce such an implementation
within an acceptable amount of time.

During the 19th Symposium on Simulation Technique
organised by ASIM – the German committee for
simulation and German branch of EUROSIM, the
Federation of European Simulation Societies, – we
organised a minisymposium on ‘Implementation aspects in
scientific computing’. The contributions covered a wide
range of problems – from new algorithmic approaches
(hardware-aware or cache oblivious) via concepts for
generic parallelisation up to optimised implementations for
specific hardware (both classical and new, such as the Cell
processor) – and formed the starting point for the present
special issue of IJCSE.

We present six contributions that are dedicated to such
algorithmic and implementation issues in scientific and
high performance computing. While they are certainly not
able to cover all questions of hardware-aware simulation,
they do, however, represent a good number of active areas

2 M. Bader et al.

of research in this field, and offer interesting approaches for
a diverse collection of scientific problems.

Donath et al. present a performance comparison of
different, inherently cache efficient (so-called cache
oblivious) parallel implementations of the lattice Boltzmann
method. Starting from a classical, cache oblivious approach
for stencil-based computations, they extend this method for
multi-core and multi-socket systems.

Bader et al. also present a cache oblivious approach,
however, they concentrate on the question of generating,
adaptively refining, and implementing iterative solvers
on recursively structured, adaptive triangular grids, where
low memory consumption and exploitation of locality
properties of space-filling curves are the features of their
approach.

Weidendorfer and Trinitis, in their work, concentrate
on the question how to improve the cache performance of
existing algorithms and implementations in high
performance computing. They introduce an infrastructure or
application-controlled prefetching of data, also anticipating
multiprocessor or multicore platforms, where lightweight
processors could be used for such optimisations of cache
access.

Stürmer et al. demonstrate how multigrid solvers can be
efficiently implemented in a hardware-oriented way on

modern microprocessors. While highly tuned linear algebra
libraries are already commonly available (see BLAS,
LAPACK, etc.), there is clearly a lack of such approaches
for multilevel methods.

Göddeke et al. also tackle the efficient implementation
of multigrid solvers. However, their approach is based on
exploiting the computational power of special-purpose
hardware, in particular that of Graphical Processing Units
(GPUs). They present how respective well-defined solver
modules can be integrated into an established Finite
Element package.

Blatt and Bastian, finally, address an approach for the
generic parallelisation of iterative solvers within typical
Finite Element computations. They propose a clear-cut
separation of parallelisation aspects from data structures,
which allows to stay flexible with respect to parallel
programming paradigms and, hence, underlying parallel
hardware.

Research on implementation aspects for simulation
software is far from being a closed chapter. Hence, with this
special issue of IJCSE, we not only want to provide
an overview of running activities, but also hope to give
stimulations for future work in this thriving sub-field of
scientific computing.

