
Int. J. Embedded Systems, Vol. 2, Nos. 1/2, 2006 1

Copyright © 2006 Inderscience Enterprises Ltd.

Introduction

Jürgen Becker
Institut für Technik der Informationsverarbeitung (ITIV),
Universität Karlsruhe (TH), Karlsruhe, Germany
E-mail: becker@itiv.uni-karlsruhe.de
WWW: http://www.itiv.uni-karlsruhe.de

Serge Vernalde
Interuniversity MicroElectronics Center (IMEC), Leuven Belgium
E-mail: Serge.Vernalde@imec.be
WWW: http://www.imec.be

Biographical notes: Jürgen Becker is full Professor for embedded electronic systems and head
of the Institute for Information Processing (ITIV) at Universität Karlsruhe (TH). His actual
research is focused on industrial-driven System-on-Chip (SoC) integration with emphasis on
adaptivity and reconfigurability in hardware/software development for automotive and
communication systems. He is Vice-President (‘Prorektor’) for Studies and Teaching at
Universität Karlsruhe (TH). He is author and co-author of more than 150 scientific papers, and
active as chairman of international conferences, Chair of GI/ITG Technical Committee of
Architectures for VLSI Circuits, Associate Editor of IEEE Transactions on Computers, and
Senior Member of the IEEE.

Serge Vernalde received the Electrical Engineering Degree in 1990 at the University of Leuven,
Belgium. In 1990 he joined the IMEC-laboratory, focusing on design technology for wireless and
multimedia systems. Between 1995 and 2004, he has been heading multiple research groups in
the fields of digital broadband transceivers, reconfigurable systems and design technology for
heterogeneous multiprocessor platforms. He is currently technical business director at IMEC,
responsible for the partner relations in the context of IMEC’s Multi-Mode Multi-Media (M4)
program. He is author or co-author of over 60 scientific publications in international conferences
and journals and was the general chair of the FPL 2004 conference.

In the design of embedded systems, Application-Specific
Integrated Circuits (ASICs) have been common components
by providing the high-performance and/or low-power
budget that many systems require at the expense of long and
difficult design cycles. In the middle of the 1980s the use of
reprogrammable components, in particular, Field
Programmable Gate Arrays (FPGAs) was introduced. Since
the early years of programmable logic arrays, FPGA
research has experienced tremendous growth in both
academic and industrial organisations. As a result, chip
programmability has now reached a high level of
sophistication. Today’s FPGAs provide cost-effective
solutions for complex system designs by means of simple,
homogeneous architectures. Thus, they are increasingly
popular as a realistic alternative to ASIC and full-custom
design. FPGAs are now sufficiently competitive for
designers to use them in high-volume designs that ship in
hundreds of thousands of units per year. FPGAs have
established themselves as the third programmable platform
after microprocessors and DSPs.

They are a promising technology for developing
high-performance embedded systems. The density and
performance of FPGAs have drastically improved over the
past few years and FPGAs now exceed the capacity and

speed requirements of the vast majority of ASIC design
starts. Furthermore, the cost per FPGA gate has
continuously declined over time. The total design cost,
including non-recurring engineering charges and design tool
costs, has escalated for ASIC-based designs. The trend in
both industry and academia is to develop chips that include
either embedded components in them such as memory, I/O
controllers and multiplier blocks, or both system
reconfigurable components and programmable cores. The
resulting processors/chips, which are not anymore a single
part of an embedded system but rather can be used to
develop the whole system, are known by various names
ranging from hybrid architectures to Systems-on-Chip
(SoC), Configurable System-on-Chip (CSoC),
Reconfigurable Systems-on-Chip (RSoC), and Systems on
Programmable Chip (SoPC), among others. Thus, FPGAs
and in particular reconfigurable devices are the integral
parts in future embedded system design. As characteristic of
an emerging technology, current FPGA research is taking
diverse directions. At the lowest level, chip design and
manufacturing issues such as interconnect technology and
testing continue to demand attention. Fundamental
questions about the internal organisation and the relative use
of logic and routing resources in a chip remain only partially

2 J. Becker and S. Vernalde

addressed. FPGA research plays a substantial role at system
level too. The rapid development of these chips has
provided the technological basis for attaining configurable
computing solutions with relative ease.

This issue is the second of two special issues, which
features 11 papers out of 23 papers in total, selected from
38 submissions that represent the diverse problems being
addressed today by the FPGA research community.
The published papers are extended special editions
of outstanding papers, which have been presented at the
11th Reconfigurable Architectures Workshop (RAW) as part
of the 18th Annual International Parallel and Distributed
Processing Symposium (IPDPS, 2004). With authors from
around the world, these papers bring us an international
sampling of significant work.

In the first contribution on ‘Runtime reconfigurable
interfaces: the RTR-IFB approach’, the authors S. Ihmor
and W. Hardt address the critical aspects of inter-module
communication in reconfigurable architectures because
dependencies between reconfigured interacting computation
modules in real-time environments lead to massive
reconfiguration efforts. Their approach introduces
runtime reconfigurable interface blocks (RTR-IFB),
which can be a solution for solving those dependencies.
The reconfiguration of modules during runtime,
synchronisation and inter-module communication is
handled. As one effect, reconfigured modules can share the
same execution resources without having a communication
gap. Their RTR-IFB methodology extends actual concepts
for inter-module communication and explains the
integration of RTR-IFBs in the IFB-Flow and the partial
reconfiguration design flow. Another interesting topic on
high-level synthesis is described in the second paper
‘Overlapping memory operations with circuit evaluation in
reconfigurable computing’ by Y. Ben-Asher, D. Citron and
G. Haber. Their contribution considers the problem of
compiling programs, written in a general high-level
programming language, into hardware circuits executed by
an FPGA (Field Programmable Gate Array) unit.
In particular, they consider the problem of synthesising
nested loops that frequently access array elements stored in
an external off-chip memory. They propose an aggressive
profile-based compilation scheme, based on loop unrolling
and code flattening techniques, where array references
from/to the external memory are overlapped with an
uninterrupted hardware evaluation of the synthesised loop’s
circuit. Additionally, the authors implemented a restricted
programming language called DOL based on the proposed
compilation scheme. Their experimental results provide
preliminary evidence that aggressive compilation can be
used to compile large code segments into circuits, including
overlapping of hardware operations and memory references.

The third contributed paper on ‘Dynamic
reconfiguration for management of radiation-induced faults
in FPGAs’ by M. Gokhale, P. Graham, M. Wirthlin,
D.E. Johnson and N. Rollins treats the problems, which may
occur if embedded reconfigurable systems are deployed in
radiated environments. Their paper describes novel methods

of exploiting the partial, dynamic reconfiguration
capabilities of Xilinx Virtex V1000 FPGAs to manage
Single-Event Upset (SEU) faults due to radiation in space
environments. The presented on-orbit fault detection
scheme uses radiation-hardened reconfiguration controllers
to continuously monitor the configuration bitstreams of nine
Virtex FPGAs and to correct errors by partial, dynamic
reconfiguration of the FPGAs while they continue to
execute. In order to study the SEU impact on signal
processing example applications, they introduce a novel
fault injection technique to corrupt configuration bits,
thereby simulating SEU faults. By using dynamic
reconfiguration, they are able to run the corrupted designs
directly on the FPGA hardware, giving many orders of
magnitude speed-up over purely software techniques. Their
work highlights the benefits of dynamic reconfiguration for
space-based reconfigurable computing.

The fourth paper, ‘Tuning adaptive microarchitectures’
by A.S. Dhodapkar and J.E. Smith, presents an adaptive
microarchitecture that reconfigures itself during runtime to
match changing program requirements. The architecture
employs four multi-configuration units – instruction and
data cache, unified L2 cache and a branch predictor.
The goal of adaptation is to achieve power efficiency
without suffering from significant performance degradation.
A light-weight profiling-hardware collects working-set
signatures and cache miss-rates for detecting program phase
changes and tuning each unit separately. The introduced
tuning algorithms use these signatures to accurately detect
program phase changes and decouple the tuning of each unit
using a novel technique.

The paper ‘Dynamic reconfiguration of Distributed
Arithmetic designs’ by K. Danne and C. Bobda addresses
aspects of distributed arithmetic in runtime reconfigurable
FPGA environments. Their paper explores various solutions
to implement an application using runtime reconfigurable
FPGA. The studied example is a mechatronic control
system, which has to adapt its behaviour during system
runtime. The described example application is modelled as a
task-graph, in which every task is associated with a
hardware module, which is characterised by its required
FPGA resource and its computation time. In order to
execute the application by using a runtime reconfigurable
FPGA, a placement of the distributed arithmetic tasks,
which defines how the tasks share the FPGA over time and
a trade-off between execution time and required FPGA area,
has to be found. The received estimated values are used to
compute execution times and FPGA areas of the over-all
system, for each of the proposed placements. The results
show which mapping is optimal for the given application
timing constraints, the order of controllers and
reconfiguration speed of the used FPGA.

The sixth paper, ‘System-level parallelism and
concurrency maximisation in reconfigurable computing
applications’ by E. El-Araby, M. Taher, K. Gaj,
T. El-Ghazawi, D. Caliga and N. Alexandridis addresses the
performance bottleneck caused by DMA transfer I/O time
between processor and FPGA, which can be greater than the

 Introduction 3

computations time. In this paper, they perform a theoretical
and experimental study of this specific performance
limitation. The mathematical formulation of the problem has
been experimentally verified on a state-of-the art
reconfigurable platform where they demonstrate and
quantify the possible solution to this problem that exploits
the system-level parallelism within reconfigurable
machines.

The next contribution on ‘Dynamically configurable
security for SRAM FPGA bitstreams’ by L. Bossuet,
G. Gogniat and W. Burleson deals with a topic, which will
be of importance in future reconfigurable applications.
Since FPGAs are important for the electronic industry, it
becomes necessary to improve their security policy
particularly for SRAM FPGAs, since they are more
vulnerable than other FPGA technologies. This paper
proposes a solution to improve the security of SRAM
FPGAs through flexible bitstream encryption. This
proposition is distinct from other works because it uses the
latest capabilities of SRAM FPGAs like partial dynamic
reconfiguration and self-reconfiguration. Additionally there
is no need for an external battery to store the secret key,
which is a great benefit.

The eighth paper on ‘Non-contiguous linear placement
for reconfigurable fabrics’ by C. Ababei and K. Bazargan
presents efficient solutions for the non-contiguous
linear placement of data paths for reconfigurable fabrics.
A strip-based architecture is assumed for the reconfigurable
fabric, which can be applied to Xilinx FPGAs. Two very
efficient algorithms are proposed to solve the simpler
problem of non-contiguous placement with blockages but
without core reuse for tree graphs. The linear ordering
obtained with any of the above algorithms is used as
input for a third efficient algorithm to solve the problem of
non-contiguous placement with both active and inactive
cores. A fourth algorithm is proposed to solve the problem
of non-contiguous placement with both core and
connectivity reuse.

As the ninth contribution from the neuro/machine
learning domain, the paper ‘Dynamically reconfigurable
neuron architecture for the implementation of
self-organising learning array’ by J.A. Starzyk, Y. Guo and
Z. Zhu describes a new dynamically reconfigurable neuron
hardware architecture based on the modified Xilinx
Picoblaze microcontroller and Self-Organising Learning
Array (SOLAR) algorithm. This architecture is aiming at
using hundreds of traditional reconfigurable FPGAs to build

the SOLAR learning machine, which has many advantages
over traditional neural network hardware implementation.
Neurons can be optimised for area and speed, and the whole
system is dynamically self-reconfigurable during the
runtime. Additionally the system architecture is expandable
to a large multiple-chip system. The tenth paper ‘Functional
programming of real-time reconfigurable embedded
systems’ by A.G. Strelzoff proposes a Hardware/Software
Co-Design execution model and new language based
on functional programming, which removes the distinction
between hardware and software and supports statically
analysable real-time system design. He introduces a
language called ‘V’, which can be viewed as the
synthesisable subset of Verilog with additional functional
programming features. V syntax looks much like Verilog or
C without pointers in order to facilitate adaptation.
The V compiler generates a net-list of the elementary
functions, which are supported by a particular array. The
execution model is a cycle-based synchronous dataflow.

The last paper in this issue ‘Mapping a class of
dependence algorithms to coarse-grained reconfigurable
arrays: architectural parameters and methodology’ by
F. Hannig, H. Dutta and J. Teich addresses the problems of
mapping algorithms by exploiting their inherent parallelism
and the possibilities of array shaped reconfigurable
hardware. The paper presents an overview of constraints,
which have to be considered when mapping applications to
coarse-grained reconfigurable arrays. Furthermore, the
authors show their design methodology for mapping regular
algorithms onto massively parallel arrays, which is
characterised by loop parallelisation in the polytope model,
and finally, in a first case study, they adapt their design
methodology for targeting reconfigurable arrays, which
shows that the presented regular mapping methodology may
lead to highly efficient implementations taking into account
the constraints of the architecture.

Acknowledgements
We would like to thank all who contributed to making this
special issue possible. They include the authors who
submitted their papers, the reviewers, the Editor in chief and
the editorial and production staff at the IJES. We hope the
readers will enjoy reading this special issue as much as we
enjoyed compiling it.

