Analysis on the effect of pressure and mass fraction of chromium to mechanical properties and electrical conductivity of copper-chromium composite in hot compaction process
by Dicki Nizar Zulfika; Widyastuti Widyastuti; Lukman Noerochim; Nanda Hendra Pratama; Subardi Marjali; Irwin Maulana; Radyum Ikono; Nurul Taufiqu Rochman
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 14, No. 3, 2019

Abstract: Cu-Cr composite is used in the electronic industry as a material which is directly connected to the electricity, as a component of a circuit breaker, cable contact, circuit board, etc. In this study, hot compaction method was employed to manufacture Cu-Cr composite which has excellent hardness and electrical conductivity. Composite manufacturing was based on powder metallurgy technique while mixing used mechanical milling method in regards to its better homogeneity. Hot compaction process set at the temperature of 300°C was applied to the powder material to increase the plasticity so the compaction can be done easier. Some variation was made on the composition of Cu : Cr ratio (90 : 10, 80 : 20, 70 : 30, and 60 : 40), and the compaction pressure (500, 700, and 1000 MPa). Sintering was conducted at 85°C with holding time of 1 h. Based on the results, the optimum sintering density of 96.81% of its theoretical density was obtained at Cu : Cr ratio as of 80 : 20. Maximum hardness at 60%Cu : 40%Cr and P = 1000 MPa was 129 VHN. And, electrical conductivity was reached its optimum value of 82.6% IACS when the Cu:Cr ratio was 90:10 at P = 1000 MPa.

Online publication date: Mon, 27-May-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com