Energetic transition within thermal machines and co-generation: effect of mass flux on critical heat flux
by Mebarkia Mohamed; Louafi Messaoud; Aoulmi Zoubir
Progress in Industrial Ecology, An International Journal (PIE), Vol. 13, No. 2, 2019

Abstract: Topics associated with the critical heat flux (CHF) in industry sector are at the heart of the hot interesting issues on the global agenda. In this paper, we introduce a new method of energy analysis of heat transfer in new generation heat exchangers applicable to the innovative sector of energy recovery. A statistical analysis is performed to study the effect of mass flux on the critical heat flux of an evaporator boiler. The aim of the present study is to provide insights into the effect of mass flux on the CHF when porous tubes are used. Independent sets of full 23 factorial designs with three central points were employed in case of porous coated tubes. Results revealed that the CHF could be influenced by some factors which were dominated in the studied conditions. More specifications of CHF and its relation with the input variables were detailed in this paper.

Online publication date: Mon, 29-Apr-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Industrial Ecology, An International Journal (PIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com