Enhanced exergy analysis of a bubble-pump-driven LiCl-H2O absorption air-conditioning system
by Julia Aman; Paul Henshaw; David S-K. Ting
International Journal of Exergy (IJEX), Vol. 28, No. 4, 2019

Abstract: A thermally-driven bubble pump can replace the electrical pump in the absorption refrigeration cycle for lifting solution from the absorber to the generator and producing the required refrigerant vapour for the cooling effect. However, the lower efficiency of bubble-pump-driven absorption refrigeration cycle hinders its widespread application. The potential of a bubble-pump-driven LiCl-H2O absorption refrigeration system that can be powered by solar thermal energy or waste heat energy is discussed and analysed in this study. The new concept of enhanced exergy analysis is integrated in the thermodynamic analyses, which quantifies the available exergy destruction of each component for overall system performance improvement. The analyses uncovered that 80% of the total exergy loss is due to each component's own internal irreversibilities, whereas the remaining is through the interaction of the irreversibilities of other components in the system. The analyses revealed that though the highest exergy losses (46%) are in the absorber, priority for improvement should be given to the generator. Furthermore, the exergy losses of the condenser, the evaporator, and the solution heat exchanger are mostly unavoidable and can be reduced by improving the other components of the system.

Online publication date: Thu, 25-Apr-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com