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Abstract: Multiplicity of data and compounding errors is often overlooked in 
data analysis for applied business scenarios. Statistical theory around multiple 
testing provides a framework for describing appropriate error rates and  
offers methods to control them in order to protect against wrong conclusions. 
However, these multiple testing procedures are often misunderstood and 
underutilised in applied business problems. In this article, existing multiple 
testing methodologies are reviewed and summarised. Specific numeric 
examples are shown to illustrate the techniques and demonstrate the statistical 
power of each. Finally, three cases are given of business-related situations 
when multiple testing can be overlooked in data analysis. 

Keywords: multiple testing; familywise error rate; FWER; false discovery rate; 
FDR; type I error; business analytics. 

Reference to this paper should be made as follows: Clements, N. (2019) 
‘Multiple testing in the world of business – when and how?’, Int. J. Business 
and Data Analytics, Vol. 1, No. 1, pp.16–29. 

Biographical notes: Nicolle Clements is a PhD Statistician and an Assistant 
Professor in the Department of Decision System Sciences at Saint Joseph’s 
University, where she also serves as the Academic Coordinator of MSBIA 
Program. She holds a Doctorate in Statistics from the Temple University’s  
Fox School of Business, Master of Science in Statistics from Virginia 
Polytechnic Institute and State University (Virginia Tech) and Bachelor of 
Science in Mathematics from Millersville University. Her PhD research was in 
the area of high dimensional multiple testing procedures and she currently 
conducts applied work in spatial and environmental applications of analytics, 
multiplicative time-series modelling and statistical analysis of substance abuse 
treatments. Much of her research is focused on adapting standard statistical 
models to be used in non-traditional applications. In addition to her research, 
she frequently teaches courses at the undergraduate, graduate and executive 
level on topics such as: statistics, data mining and R statistical programming. 

 

1 Introduction 

Testing a single hypothesis typically involves making a choice between  
two complementary statements about a population parameter, referred to as the null and 
alternative hypothesis. Multiple testing refers to simultaneous testing of several 
hypotheses within a data analysis. This scenario is rather common and often overlooked, 



   

 

   

   
 

   

   

 

   

    Multiple testing in the world of business 17    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

in many business applications, which brings the research question to this article. Some 
examples include: 

1 Fitting a multiple linear regression model to identify which coefficients are 
statistically different from zero. 

2 Screening for changes across multiple locations in a geographic region. 

3 Evaluating an experimental design with respect to multiple outcomes and trying to 
decide which outcomes in the experiment yield significant effects. 

The decision to accept or reject the null hypothesis is based on the information gathered 
from a sample, which is a subset of the population. Since information from the entire 
population is often infeasible, it is possible that the sample data can lead to erroneous 
decisions regarding the null and alternative. Specifically, type I and type II errors are 
concerning and unintended consequences. A type I error occurs when a true null 
hypothesis is incorrectly rejected (also known as a ‘false positive’), while a type II error 
occurs by incorrectly failing to reject a false null hypothesis (also known as a ‘false 
negative’). Often, the goal of data analysts is to develop testing procedures that minimise 
the probability of making these errors without sacrificing the power to detect false nulls. 
However, it is impossible to minimise these errors simultaneously, since reducing  
one type of error will inflate the other error. Controlling type I error has traditionally been 
the focus of statistical testing methods (Bretz et al., 2010). 

Recently, instead of single hypothesis testing, researchers are being confronted with 
testing hypotheses together, where n can be very large. One cannot employ the same 
testing procedures used for a single hypothesis because the probability of making an  
error compounds as n gets large. This is called the multiplicity effect. Multiple testing 
procedures are necessarily different than single testing procedures because they take into 
account the number of hypotheses being tested to ensure simultaneous control of error. 
When testing several hypotheses together, called a family of hypotheses, an appropriate 
compound error measure must first be defined. Then, a procedure is developed that 
allows one to control this error rate at a desired level, called α. 

If the multiplicity of tests is not taken into account, then the probability that some of 
the true null hypotheses are rejected by pure chance may be undeservedly large. For 
illustration, consider the case of N = 100 hypotheses being simultaneously tested, all of 
them being true, with the size and level of each test exactly equal to α. For α = 0.05,  
five true hypotheses are expected to be rejected erroneously. Further, if all tests are 
mutually independent, then the probability that at least one true null hypothesis will be 
falsely rejected is 1 – 0.95100 = 0.994!. Figure 1 illustrates the increasing likelihood of 
making a type I error as the number of hypotheses, n increases. 

Of course, this problem does not exist if there is a priori focus is on a particular 
hypothesis. In this case, the decision can still be based on the corresponding marginal  
p-value. The problem of multiplicity only surfaces if the list of p-values is searched for 
significant results, a posteriori. Unfortunately, the latter is much more common. In such a 
case, multiple testing procedures should be used to guard against committing one or more 
type I errors. 

The objective of this article is to give an overview of multiple testing concepts, define 
several measures of error and corresponding testing procedures and give examples of 
situations in which multiple testing problems in business research may occur. The current 
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business literature does not provide a comprehensive overview in one document, so this 
article will fill that gap. The remainder of the paper is structured as follows. In Section 2, 
some notation is defined that will be used throughout the paper. Afterwards, Section 3 
describes two types of type I error controlling rates are explained along with multiple 
corresponding error-controlling procedures. Then, a guide as when to worry about 
multiple testing adjustments is provided in Section 4. Finally, examples are given where 
multiple testing should be used in business scenarios in Section 5 and wrapped up with 
some concluding remarks in Section 6. 

Figure 1 Assuming independence, the probability of making at least one type I error increases 
significantly as the number of hypotheses tested gets large 

 

2 Notations 

Suppose X is data generated from an unknown probability distribution P. Consider the 
problem of simultaneously testing n hypotheses from this data. The set of null hypotheses 
are written as H1, H2, …, Hn and the corresponding alternative hypotheses are 

1 2, , , .K nH H H  Also, the analogous test statistics, critical values and p-values are T1, T2, 
…, Tn, c1, c2, …, cn and p1, p2, …, pn, respectively. Many multiple testing procedures use 
ordered p-values, which are denoted by subscripts in parentheses: p(1), p(2), …, p(n). The  
ith ordered p-value, p(i), corresponds to the null hypothesis H(i), which is not necessarily 
the same as Hi. 
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Table 1 gives the various outcomes when testing hypotheses simultaneously,  
where Hi0: θi = θi0 is the null hypothesis and Hi1: θi ≠ θi0 is the two-sided alternative, for  
i = 1, 2, …, n. Of these quantities in Table 1, only n, A and r are known after applying a 
particular multiple testing procedure. The number of type I errors, V and the number of 
type II errors, T, are unknown but desirably small. Most multiple testing procedures focus 
on controlling V in some capacity. 
Table 1 Multiple testing outcomes from testing n hypotheses 

Decision   

Fail to reject null Reject null 
Total 

Null true (θ = θ0) U (correct decisions) V (type I errors) n0 Truth 
Alternative true (θ ≠ θ0) T (type II errors) S (correct decisions) n1 

 Total A R n 

Multiple testing procedures can be categorised into single-step tests or multi-step tests, 
also called stepwise procedures. Single step testing procedures define one critical value 
for which all p-values are then compared. In other words, suppose the common critical 
value is c, then a single-step procedure rejects all hypotheses Hi if the corresponding  
pi ≤ c. Multi-step or stepwise, procedures compare each p-value to a different threshold. 
Consider the set of ordered p-values p(1) ≤ p(2) ≤ … ≤ p(n) and the corresponding set of 
critical values c1, c2, …, cn. A step-down procedure rejects H(i) for which pi ≤ pk, where  
k = max{i: pj ≤ cj, ∀j < i}. In other words, if the largest p-value p(n) < c(n), reject H(n) and 
continue for i = n – 1, n – 2, …, 3, 2, 1 comparing p(i) with ci, rejecting H(i) if p(i) < ci. 
Continue until, for the first time, p(i) > ci. If p(n) > cn, reject no hypotheses. If p(i) < ci, for 
all values of i, reject all the hypotheses. A step-up procedure rejects H(i) corresponding to 

*( ) ( )≤i kp p  where k* = max{i: p(i) ≤ ci}. 

3 Error rates and corresponding procedures 

3.1 Familywise error rate 

One of the most commonly used measures of overall type I error is called the familywise 
error rate (FWER). The FWER is the probability of making one or more type I errors.  
In other words, out of n simultaneously tested hypotheses, where V is the number of  
type I errors made out of n decisions (recall: V is an unknown quantity), then FWER = 
Prob{V > 0}. In the case of multiple hypothesis testing, the FWER should be controlled 
at a desired overall level, called α. 

The Bonferroni procedure is one of the most frequently used adjustments utilised by 
researchers dealing with multiplicity because it is easy to use and it can be used in any 
dependence structure. However, it can be extremely conservative by controlling type I 
error at a value much less than the specified level. The Bonferroni correction is a single 
step procedure, meaning all hypotheses are compared to the same threshold for every 
hypothesis tested. In terms of hypothesis testing, the ith null hypothesis is rejected if the 
corresponding p-value is less than n

α  where α is the desired overall significance level 

and n is the number of hypotheses being simultaneously tested (Holland and Copenhaver, 
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1987; Hochberg and Tamhane, 1987). For an example of the critical values in this 
procedure, see column 3 in Table 2. Using the Bonferroni procedure will control the 
FWER under any data’s dependence structure at level 0 .n

n
α  

Table 2 An illustration 

Critical values/reject Hi0? 
Rank p-value 

Bonferroni Šidák Holm Hochberg 
1 0.0024 0.005/yes 0.005116/yes 0.005/yes 0.005/yes 
2 0.0057 0.005/no 0.005116/no 0.00556/no 0.005556/yes 
3 0.0061 0.005/no 0.005116/no 0.00625/no 0.00625/yes 
4 0.0391 0.005/no 0.005116/no 0.007143/no 0.007143/no 
5 0.0488 0.005/no 0.005116/no 0.008333/no 0.008333/no 
6 0.0630 0.005/no 0.005116/no 0.01/no 0.01/no 
7 0.1294 0.005/no 0.005116/no 0.0125/no 0.0125/no 
8 0.3613 0.005/no 0.005116/no 0.016667/no 0.016667/no 
9 0.4689 0.005/no 0.005116/no 0.025/no 0.025/no 
10 0.6725 0.005/no 0.005116/no 0.05/no 0.05/no 

Note: Using of four FWER procedures comparing their critical values to simulated  
p-values and the decision made. 

Šidák’s (1967) procedure is another common multiple testing adjustment to control the 
FWER, but only when the tests are independent or positively dependent. The  
notion of positive dependence is satisfied by a number of multivariate distributions, 
including multivariate normal test statistics with positive correlations, absolute values of 
studentised independent normals and multivariate t and F (Benjamini and Yekutieli, 
2001). Šidák’s (1967) procedure is more powerful than Bonferroni’s but the gain is small, 
so often the procedure is overlooked. Like the Bonferroni correction, Šidák’s (1967) 
correction is also a single step procedure. Šidák’s (1967) correction factor says to reject 
the ith null hypothesis if the corresponding p-value is less than 1 – (1 – α)1/n. It is clear to 
see that the Šidák (1967) correction gives a stronger bound than the Bonferroni correction 
because 1/1 (1 ) ,≤ − − n

n
α α  for any n ≥ 1. For an example of the implementation of this 

procedure, see column 4 in Table 2. 
However, the Šidák (1967) correction requires the additional condition of 

independence or positive dependence among the tests or interval estimates, whereas the 
Bonferroni correction has no assumption on the dependence structure. Previously, 
because the Šidák (1967) correction required the user to calculate fractional powers (i.e., 
the nth root), the computationally simpler Bonferroni correction was often the preferred 
adjustment factor. Now, since computing fractional powers is trivial, preference of the 
Bonferroni method is due in part to tradition or unfamiliarity with the Šidák (1967) 
method. Unfortunately, Šidák’s (1967) method offers minimal gain, in terms of statistical 
power, for conventional significance levels (α between .01 and .10). 

The Holm’s (1979) procedure is a step-down procedure which controls the FWER 
under any dependence structure. The critical values used in hypothesis testing are 
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1 1
=

− +
ic

n
α  for i = 1, 2, …, n. This procedure is implemented by computing and 

ordering the p-values p(1) ≤ p(2) ≤ … ≤ p(n). For i = 1, 2, …, n, if ( ) ,
1 1

≥
− +

ip
n
α  then 

accept H(i), H(i+1), …, H(n); otherwise, reject H(i) and increment to i + 1, while i < n. For an 
example of the critical values used in this procedure, see column 5 in Table 2. 

Hochberg’s (1988) procedure is a step-up method that is based on the same critical 
values as the Holm’s (1979) procedure, but is generally more powerful. Hochberg’s 
(1988) method maintains control of FWER under independence or positive dependence 
of the p-values, proved by Hochberg (1988), Sarkar (1998) and Sarkar and Chang (1997). 

This testing procedure rejects all p(i) ≤ p(k), where { }( )max : .
1

= <
− +

ik i p
n i
α  For an 

example of how to implement this procedure, see column 6 in Table 2. Notice the gain of 
two additional rejections using Hochberg’s (1988) step-up method compared to Holm’s 
(1979) step-down method using the exact same critical values. 

Given in Table 2 are ten independently simulated p-values, which were sorted and 
ranked. Based on these p-values, four FWER procedures are implemented: Bonferroni, 
Šidák (1967), Holm (1979) and Hochberg (1988). Table 2 lists the corresponding critical 
values (ci) and the binary decision to accept or reject the null hypothesis, at significance 
level α = 0.05. 

3.2 False discovery rate 

The false discovery rate (FDR), proposed by Benjamini and Hochberg (1995) is the 
second most common measure of type I errors. The FDR is the expected proportion of 
type I errors among all the rejected null hypotheses. If there are no rejected hypotheses, 
the FDR is defined to be zero. In terms of Table 1, .max( , 1)

⎡ ⎤= ⎢ ⎥⎣ ⎦
VFDR E R  

Comparatively, the FDR is less conservative than the FWER, meaning FWER control 
ensures FDR control. However, a multiple testing procedure with FDR control will not 
necessarily maintain control of the FWER. The FDR is a widely accepted and utilised 
notion of type I errors in large-scale multiple testing investigations (Nichols, 2007). 

The Benjamini and Hochberg (1995) method, known as the BH method for short, was 
proposed at the same time that they introduced the notion of the FDR error metric. This is 
a step-up method defined by using the ordered p-values for all n hypotheses: p(1), p(2), …, 
p(n). The method works by letting { }( )max := <i ik i p n

α  and rejecting all hypotheses 

whose p-values are less than or equal to p(k). This procedure will control the FDR at level 
0 ,n

n
α  under the assumption of independence of the null p-values. Benjamini and 

Yekutieli (2001) later showed that the BH method would control the FDR if the p-values 
have positive dependence (see also Sarkar, 2002). Since 0 ,<n

n
α α  the FDR is 

conservatively controlled. However, n0, the number of true null hypotheses, is generally 
unknown. 
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The Benjamini and Yekutieli (2001) method, abbreviated as the BY method, was 
developed to control the FDR under any arbitrary dependence assumption among the test 
statistics. The BY method adjusts the BH method’s k with { }*

( )max := <i
n

ik i p c n
α  

where 1
1

ln( )−
=

= ≈∑ n
n i

c i n  when n is large. Then, reject all *( ) ( ) .≤i kp p  Although this 

method gives the user freedom of use under any dependence structure, the downfall is 
that it can be quite conservative in many situations. The work of Sarkar (2008) extended 
this result by proposing a different stepwise method to control FDR under arbitrary 

dependence using critical values 
2

( 1) .
2
+

=i
i ic

n
α  Blanchard and Roquain (2009) also 

proposed a step-up test to be used in arbitrary dependence by using the critical values 
( 1)(2 1) .

3 ( 1)
+ +

=
+

i
i i ic

n n
 

In Table 3, a toy example is given with sample p-values and the critical values for 
Benjamini and Hochberg’s (1995) procedure and Benjamini and Yekutieli’s (2001) 
procedure. In this example, α = 0.05 and the p-values are assumed to be independent so 
that both procedures ensure control of the FDR. Notice in the BH method, the largest  
p-value, p(n), is always compared to the overall level of significance, α. Also, take note of 
how much smaller the critical values are for the BY procedure compared to BH, due to 
the adjustment of cn = 2.9289 in the denominator. 
Table 3 An illustration of two FDR procedures comparing their critical values to p-values and 

the decision made 

Critical values/reject Hi0? 
Rank p-value 

Benjamini-Hochberg Benjamini-Yekutieli 
1 0.0004 0.005/yes 0.0017/yes 
2 0.0038 0.01/yes 0.0034/yes 
3 0.0047 0.015/yes 0.0051/yes 
4 0.0191 0.02/yes 0.0068/no 
5 0.0218 0.025/yes 0.0085/no 
6 0.0430 0.03/no 0.0102/no 
7 0.0691 0.035/no 0.0119/no 
8 0.1849 0.04/no 0.0137/no 
9 0.2004 0.045/no 0.0154/no 
10 0.3602 0.05/no 0.0171/no 

3.3 Adaptive methods 

Unfortunately, many of the procedures described in the previous two sections will control 
the respective error rate at a level of 0 ,n

n
α  which is less than the desired level α. The 

number of true null hypotheses, n0, is typically unknown and conservatively influences 
the control of the FWER and FDR. However for a given procedure, a suitable estimate of 
n0 obtained from the data can potentially improve the original methods. This has been the 
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rationale behind developing adaptive procedures through an estimation of n0. A few 
popular adaptive methods are described next. 

Schweder and Spjotvoll (1982) were the first to propose a simple informal graphical 
procedure to estimate the number of true null hypotheses, n0. If W(λ) denotes the number 
of p-values greater than λ, then E[W(λ)] = n0(1 – λ) since the p-value should be large for a 
true null hypothesis. Thus, a plot of W(λ) against (1 – λ) should indicate a straight line 
with slope n0 for large λ. The plot will tend to show a linear behaviour for larger  
p-values, the slope of which gives an estimate of the number of true nulls. The points 
deviating from the straight line will most likely correspond to false nulls. So, by looking 
at the plot, one can get a visual estimate of the number of true null hypotheses. In  
Figure 2, an illustration of a Schweder and Spjotvoll (1982) plot is given. 

Figure 2 Illustration of a Schweder and Spjotvoll (1982) plot used to estimate the number of true 
nulls by the slope of the line 

 

Note: In this example, the slope is approximately 80, so n0 ≈ 80 could be used in adaptive 
methods. 

The adaptive BH method of Storey et al. (2004) is among the most often used of the 

adaptive methods. Their estimate is { }0
( ) 1min ,

1
+

=
−

nW λn n
λ

 for any fixed tuning 

parameter λ ∈ (0, 1) and ( )
1

( )
=

= ≥∑ n
n ii

W λ I p λ  where I(pi ≥ λ) is the indicator function 

which takes a value of 1 when pi ≥ λ and a value of 0 when pi < λ. So, Wn(λ) is a count of 
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the number of p-values greater than or equal to λ. In a sense, it is a count of the number of 
‘large’ p-values that likely come from the null hypothesis. 

Other estimators of n0 exist, such as the one proposed in Benjamini et al. (2006). But 
regardless of the estimator used, adaptive methods work by using the estimate, 0 ,n  in 
place of n0 in the critical value calculations. For example, the adaptive Bonferroni 
method rejects p-values that are less than 

0n
α  instead of ,n

α  which yields at least as 

many, if not more, rejected null hypotheses (i.e., higher power). 
As another example, the adaptive BH method that corresponds to an estimate  

of n0 rejects all hypotheses whose p-values are less than or equal to ( )k̂p  where 

( )
0

ˆ max : .⎧ ⎫= <⎨ ⎬
⎩ ⎭

i
ik i p
n
α  This adaptive BH method based on Storey, Taylor and Siegmund 

will control the FDR under independence of the p-values (Benjamini et al., 2006; Storey 
et al., 2004), as well as under certain form of asymptotic weak dependence. 

4 When should analysts worry about multiplicity? 

The answer is, it depends! If the goal of data analysis is to control the type I error rate for 
individual tests, an adjustment for multiplicity is unnecessary. However, if the goal is to 
ensure simultaneous control over the family of hypotheses, thus control the FWER or the 
FDR, a multiplicity adjustment is essential. Regrettably, no single answer exists to when 
it is appropriate to control which error rate. Different data analysts may have diverse but 
still rational opinions. 

In addition to choosing which error rate should be under control, the analyst  
must next evaluate the dependency structure of the data. If the hypotheses can be 
assumed independent, any of the methods mentioned above will work for the respective 
error rate (e.g., Holm or Hochberg for FWER or Benjamini-Hochberg for FDR). 
However, if the hypotheses have a dependency between them, the analyst must use one  
of the conservative methods to control the type I errors (Bonferroni for FWER or 
Benjamini-Yekutieli for FDR). 

In essence, the data analyst needs to make sequential decisions about the objective of 
the analysis. First, the analysis must determine if there is a need to make conclusions 
about multiple hypotheses, parameters or objectives. If yes, the analyst must then decide 
the level of control he/she wants to have over type I errors (namely, control the FWER or 
FDR). Finally, the analyst needs to estimate the dependence structure (independent, 
positively dependent or other) of the data before selecting the multiple testing procedures 
to use for adjustments in the analysis. 

5 Multiple testing in practice 

The need to simultaneous test of several hypotheses can easily be overlooked in many 
business applications. In this section, examples are given where multiple testing should 
be used in business scenarios. 
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5.1 Example 1: multiple testing in regression models 

Suppose an econometrician is interested in trying to find relevant predictors of demand 
for a service. There are two outcome/dependent variables describing the demand 
(indicator for use of service yes/no and the frequency of occasions). Suppose  
ten predictor/independent variables could theoretically explain the demand, such as age, 
gender, education, income, price, native language, socio-economic status, etc. Running 
two separate multiple regressions will yield 20 coefficients estimations and their  
p-values. With enough independent variables in the regression models, the 
econometrician would sooner or later find at least one variable with a statistically 
significant correlation between the dependent and independent variables. These 
significant correlations may or may not be spurious! If the regression model is the only 
one under consideration and the econometrician is not interested in performing model 
selection, then multiple testing adjustments should be applied when drawing conclusions 
about the coefficients (Mumdrom et al., 2006). 

Expanding on the use of multiple testing in regression models, in some situations a 
joint test of a composite hypothesis regarding regression coefficients should be used to 
draw conclusions. Dmitrienko et al. (2009) reviewed multiple comparison procedures 
used in pharmaceutical statistical regression models by focusing on different drug 
development applications. Farcomeni (2008) and Veazie (2006) provided more examples 
from the literature that are helpful in understanding when to and when not to, combine 
hypotheses. Some of their examples are summarised in the next two paragraphs. 

Veazie (2006) pointed to two articles in the Journal of Health Economics that both 
used regression models on a dependent variable by fitting a second order polynomial. 
Also known as quadratic regression, polynomial models are a common practice to 
capture nonlinear relationships. In these articles, the null hypothesis for each coefficient 
of the polynomial was rejected according to its individual p-value. It was concluded that 
the explanatory variable had a quadratic relationship with the response variable. Veazie 
(2006) suggests that the authors rejected the joint hypothesis that both coefficients were 
simultaneously zero. However, this is different from a researcher testing second-order 
nonlinearity (as opposed to testing the parabolic shape). In this case, an individual test of 
the coefficient on the second-order term (i.e., the coefficient on the squared variable) is 
appropriate because the value of the first order term is meaningless in the judgement of 
nonlinearity. 

As a different situation in regression models, Veazie (2006) points to a recent  
article in Medical Care. The article’s methodology categorised a count variable into  
three size-groups and used a set of dummy variables to represent the two largest groups 
and the smallest group was referred to as the baseline category. The results explained that 
based on the individual significance of the two dummy variables, the hypothesis that both 
coefficients were zero was rejected. The article concluded that the dependent variables 
were related to having larger counts based on the underlying concept. In this conclusion, 
they collapsed two categories into a single statement about being larger on the underlying 
variable. Yet, if the authors meant that both categories are larger than the reference 
group, then it is a test of both coefficients being simultaneously zero that is relevant. A 
joint test is warranted here to avoid type I errors. 
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5.2 Example 2: multiple testing in spatial screening for significant locations in 
a geographic region 

Consider a data analysis project with an objective of identifying trends present in time 
series data across multiple geographic locations. This type of time series data is common 
in many applications, such as a business’s sales data at various retail stores in a region, 
US census data in each state collected every ten years or even hourly weather observation 
taken from different weather stations. 

As a specific example, Clements et al. (2014) studied vegetation monitoring in  
East Africa based on the normalised difference vegetation index (NDVI) series from 
satellite remote sensing data that was collected between 1982 and 2006 over 8 kilometre 
grid points. The NDVI is a simple graphical indicator that can be used to analyse remote 
sensing measurements to assess whether region being observed contains live green 
vegetation or not. Trend changes in vegetation can give valuable information to decision 
makers about effective land use and development which is fundamental in planning 
agricultural endeavours. In particular, decision makers want to gain knowledge of current 
vegetation trends and use them to make accurate predictions. Vegetation trends are also 
closely related to sustainability issues, such as management of conservation areas and 
wildlife habitats, precipitation and drought monitoring, improving land usage for 
livestock and finding optimum agriculture seeding and harvest dates for crops. For this 
reason, there are many decision makers, agencies and organisations that are invested in 
the study of land use and land cover trends, linking them to climate change and the 
socioeconomic consequences of these changes. 

To test for significant trend in each location, Clements et al. (2014) apply the 
monotonic trend test proposed by Brillinger (1989) for a time series consisting of a signal 
and stationary autocorrelated errors. The NDVI annual averages were used as the 
observed time series. This test examines the null hypothesis that the series has a signal, 
that is, constant in time against the alternative hypothesis that the signal is monotonically 
increasing or decreasing in time. Thus, p-values generated for each site (8 km × 8 km grid 
of land), provides evidence of vegetation change occurring over the years – the smaller 
the p-value, the higher is the evidence of a significant vegetation change. For each site, a 
decision must be made regarding the significance of vegetation change that might have 
occurred over the years at that site and, if vegetation change is found significant, 
determine the direction in which this change has taken place. This must be done 
simultaneously for all sites (≈ 50,000) in the East African region in a multiple testing 
framework designed to ensure a control over a meaningful combined measure of 
statistical type I errors. It is important to provide an upper bound on type I errors (false 
detections), since there is large risk associated with falsely declaring an area to have 
significant vegetation changes. 

5.3 Example 3: multiple testing in design of experiments 

The rise of the design of experiments within business organisations or what is  
sometimes referred to as field experiments, has the potential to transform organisational 
decision-making. Carefully designed experiments also can provide new insight into many 
areas of business, such as product design, human resources or public policy. Companies 
that invest in randomised design of experiments have a lot to learn from their data. Yet, if 
the experiment is run incorrectly or not analyses properly, the organisation cannot receive 
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the advantages of this scientific process. Goeman and Solari (2014) explain how this 
applies to multiplicity in genomics. The article describes the exploratory nature of 
genomics experiments, in which researchers look at the selection of genes before or after 
testing and at the role of validation experiments. In this experimental setting, multiplicity 
must be accounted for in gene selection. The following paragraphs describe a more 
explicit example of the misuse of multiple testing in a design of experiment. 

A common mistake in designing an experiment is the lack of definition of which 
hypotheses are of interest for one experimental study. For example, consider an 
experiment in which three new treatments (X, Y, Z) are compared with a standard 
treatment, called the control (C). One could consider all six pairwise contrasts (X vs. C,  
X vs. Y, X vs. Z, Y vs. C, Y vs. Z and Z vs. C) as one experiment or family of comparisons. 
However, often the main goal, or primary hypothesis, is to compare the new treatments 
with the control (X vs. C, Y vs. C and Z vs. C). Secondary to comparing new treatments 
with the control is to compare the new treatments with each other (X vs. Y, X vs. Z and  
Y vs. Z). These three would constitute as secondary analysis and is not the main goal of 
the experiment. In this situation, it may be appropriate to perform separate multiplicity 
adjustments in each tier of the experiment. 

In general, it is reasonable to suggest that the FWER should be under control  
when the results of a well-defined family of multiple tests should be summarised in  
one conclusion for the whole experiment, using methods such as Bonferroni, Šidák 
(1967), Holm (1979) and Hochberg (1988). For example, if each new treatment is 
significantly different from the control, the conclusion that all three treatments differ 
from the standard treatment should be based upon an adequate control of the FWER and 
not the marginal p-values. Otherwise, the type I error of the final conclusion is not 
necessarily controlled, which means that the aim of the design of experiment is not 
reached. 

6 Conclusions 

It is not common practice among applied business researchers to use multiple testing 
procedures in analysis applications, such as variable selection in regression analysis. 
Rather, it is much more common to see each specific testing conducted at the nominal 
level (α = 0.05). However, other fields, particularly the medical field, are beginning to 
put multiple testing practices to use (Farcomeni, 2008; Streiner and Norman, 2011; 
Goeman and Solari, 2014). In this article, it is explained that using unadjusted testing 
procedures where multiplicity exists, the associated overall type I error rate may  
be inflated. Specific numeric examples are shown to illustrate the techniques and 
demonstrate the statistical power of each. 

For example, in regression analysis, the type I error rate could be magnified by as 
much as two to six times the nominal level, depending upon the number of predictors in 
the model relative to the number of predictors that have a non-zero relationship with  
the response. Consequently, one or more variables may be identified as ‘significant’ 
predictors of the response that are not actually needed in the model. In other words, the 
amount of variance in the response explained by the model’s variables could be 
negligible (Mumdrom et al., 2006). 
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There is an argument for an alternative approach to significance testing for analysis of 
data that should be mentioned. Bayesian statistics differ from the testing procedures 
discussed in this article because they focus on minimising what is called the ‘Bayes risk 
under additive loss’, rather than controlling type I error rates. In principal, control of  
type I error is not required to make valid inferences from a Bayesian perspective. Some 
conceptual and practical difficulties involved with the control of type I error can be 
avoided by using Bayesian methods, especially in the case of multiplicity. However, this 
article concentrated on classical statistical methodology based upon significance testing. 
The article assumes that significance tests are going to be used for data analysis. Under 
this assumption, this article summarised some available procedures to adjust for multiple 
testing. Since Bayes methods do not provide adjustments of p-values, as they do not give 
p-values at all, they are not discussed in this article. 

In summary, to ensure valid statistical inference in the case of multiplicity, methods 
to adjust for multiple testing are necessary. Adjustments should be used in all 
confirmatory studies where a clearly defined family of tests exists and one final 
conclusion and decision will be drawn. In such cases, the maximum type I error rate 
under any family of null hypotheses should be under control at the desired level α. The 
simple, but commonly used, Bonferroni procedure is often not appropriate due to low 
power. However, there are a number of more powerful procedures available for in 
various multiplicity situations, as summarised and explained in this article. These 
methods deserve wider knowledge and application in business research than what is 
currently provided in the literature. 
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