
Int. J. Critical Computer-Based Systems, Vol. 9, Nos. 1/2, 2019 133

AltaRica 3.0 in ten modelling patterns

Michel Batteux
IRT SystemX,
8 Avenue de la Vauve, 91120 Palaiseau,
Paris-Saclay, France
Email: michel.batteux@irt-systemx.fr

Tatiana Prosvirnova*
Laboratoire Genie Industriel,
CentraleSupélec,
Université Paris-Saclay,
8-10, rue Joliot-Curie,
91190 Gif-sur-Yvette, France
Email: tatiana.prosvirnova@centralesupelec.fr
*Corresponding author

Antoine B. Rauzy
MTP,
Norwegian University of Science and Technology,
S.P. Andersens veg 5,
7491 Trondheim, Norway
Email: antoine.rauzy@ntnu.no

Abstract: AltaRica 3.0 is an object-oriented modelling language dedicated
to probabilistic risk and safety analyses. It is a prominent representative
of modelling formalisms supporting the so-called model-based approach
in reliability engineering. In this article, we illustrate the key features of
the AltaRica 3.0 technology by presenting the implementation of ten very
common modelling patterns. We demonstrate in this way the expressive
power of the language as well as its elegance and simplicity of use.

Keywords: probabilistic risk and safety assessment; modelling languages;
modelling patterns; AltaRica 3.0.

Reference to this paper should be made as follows: Batteux, M.,
Prosvirnova, T. and Rauzy, A.B. (2019) ‘AltaRica 3.0 in ten modelling
patterns’, Int. J. Critical Computer-Based Systems, Vol. 9, Nos. 1/2,
pp.133–165.

Biographical notes: Michel Batteux is currently a Research Engineer
at the Technological Research Institute SystemX (France) and a Project
Manager of the OpenAltaRica Project. After a Master degree in Mathematics
and Computer Science at the Paris Diderot University, and a PhD in
Computer Science at the Paris-Sud University, he had several research

Copyright © 2019 Inderscience Enterprises Ltd.



134 M. Batteux et al.

engineer positions in different academic or industrial research laboratories: the
Laboratory of Model driven engineering for embedded systems of CEA, the
Computer Science Laboratory of the Ecole Polytechnique, Thales Research
and Technology. His topics of interest are around the model-based design
and assessment of complex technical systems, with a special focus on the
performance assessment.

Tatiana Prosvirnova currently works as a Research Engineer at
CentraleSupélec (Paris, France). She has a PhD in Computer Science. She
is graduated from Ecole Polytechnique. She has MS of Science of Ecole
Polytechnique in Systems Engineering. She has been working as a Software
Developer at Dassault Systemes (the largest French software editor) for three
years. Her research interests are model based safety assessment, systems
engineering, formal methods, software development, system architecture
modelling and model synchronisation.

Antoine B. Rauzy has currently a Full Professor position at Norwegian
University of Science and Technology (NTNU, Trondheim, Norway). He is
also the head of the chair Blériot-Fabre, sponsored by the group SAFRAN,
at CentraleSupélec (Paris, France). During his career, he was a Researcher
at French National Centrer for Scientific Research, a CEO of the start-up
company ARBoost Technologies and The director of the R&D Department
on Systems Engineering at Dassault Systemes. He works in the reliability
engineering and system safety field for more than 20 years. He extended his
research topics to systems sngineering since about ten years. He published
over 150 articles in international conferences and journals. He developed
state-of-the-art algorithms and software for probabilistic safety analyses.

1 Introduction

The aim of this article is to present the key features of the object-oriented, formal,
modelling language AltaRica 3.0. The AltaRica 3.0 technology is dedicated to
probabilistic risk and safety analyses of complex technical systems. We shall use
here the expression ‘probabilistic risk analysis’ or equivalently ‘probabilistic risk
assessment’ in a broad sense, which encompasses processes as diverse as safety
and reliability assessments, optimisations of maintenance policies, assessments of the
expected production level over a given period and so on. In a word, we shall speak here
about assessments of operational performance of technical systems subject to random
events such as mechanical failures, operator errors.

A long journey has been made since the publication of the WASH 1,400 report,
(Rasmussen, 1975). Probabilistic risk and safety analyses are nowadays used on a daily
basis in virtually all industries presenting significant risks for their operators, the public
or the environment. Safety standards such as IEC 61508 (2010), ARP 4761 (2004) or
ISO 26262 (2012) recommend this approach.

As of today, these analyses rely mainly on fault trees, event trees, reliability
block diagrams or a combination of those, see, e.g., Kumamoto and Henley (1996),
Andrews and Moss (2002) and Rausand and Høyland (2004) for reference books.
These modelling formalisms present a good compromise between the ease of use, the



AltaRica 3.0 in ten modelling patterns 135

accuracy of descriptions and the computational complexity of assessments. However,
they have important drawbacks as well. First, they lack expressive power. Cold and
warm redundancies, exclusive failures, reconfigurations, control mechanisms and many
other increasingly common features of technical systems can only be approximated,
leading to over-pessimism and inaccurate ranking of causes of risks, (see, e.g., Epstein
and Rauzy, 2005). Second, models designed with these formalisms are very distant from
system specifications. Retrieving system specifications from the safety models is nearly
impossible. For this reason, these models are hard to share with stakeholders and to
maintain through the life-cycle of systems.

These drawbacks were compensated by advantages when systems at stake where
purely mechanical, or at least when their mechanical parts were dominant. It is not the
case anymore for software intensive, high integrity, critical systems. In these systems,
the control (and reconfigurations) play a central role. We can characterise them as
deformable: their architecture changes throughout their mission. New methods have to
be developed to describe systems’ behaviour more accurately.

To get more expressive power, one needs to leave combinatorial (Boolean)
formalisms for states/events formalisms such as Markov chains or stochastic Petri
nets (Ajmone-Marsan et al., 1994). Explicit representations of the state space, such
as Markov chains, suffer from the exponential blow-up of the number of states
and transitions. Implicit representations, such as stochastic Petri nets, are thus highly
preferable. They are however not sufficient in themselves to reduce the distance between
system specifications and safety models. With that respect, the lack of structure of
stochastic Petri nets is an important drawback (see, e.g., Signoret et al., 2013).

The promise of the so-called model-based risk and safety assessment approach is
to provide analysts with modelling formalisms that have both a high expressive power
and suitable structuring mechanisms. It is possible in this way to design models that
reflect the functional and physical architectures of the system under study. Safety models
are thus closer to systems specifications, which makes them both easier to share with
non-specialists and to maintain. Moreover, a single model can be used to assess several
safety goals.

Modelling formalisms that support this approach can be classified into three
categories. The first category consists of specialised profiles of model-based systems
engineering formalisms such as SysML, (see, e.g., David et al., 2010; Yakymets et al.,
2014; Mauborgne et al., 2016; Mhenni et al., 2016). The objective here is however
more to introduce a safety facet into models of system architecture than to design actual
safety models. The second category consists of extensions of fault trees or reliability
block diagrams so to enrich their expressive power. This category includes dynamic
fault trees (Dugan et al., 1992; Bouissou and Bon, 2003), multistate systems (Lisnianski
and Levitin, 2003; Natvig, 2010; Papadopoulos et al., 2011), and some other proposals
(Signoret et al., 2013). The third category, which aims at taking fully advantage of the
model-based approach, consists of modelling languages such as SAML (Güdemann and
Ortmeier, 2010), Figaro (Bouissou et al., 1991) and AltaRica (Point and Rauzy, 1999).
SAML is oriented towards probabilistic model checking (and compiled into PRISM
descriptions (Kwiatkowska et al., 2011)). Figaro has been historically the first modelling
language dedicated to probabilistic risk and safety analyses. It is a rule-based systems
(Bouissou et al., 2002; Bouissou and Houdebine, 2002). Since the very first version of
AltaRica, the choice has been made to rely on the more natural and mathematically
clearer notion of state automata.



136 M. Batteux et al.

AltaRica 3.0 is, as its name suggests, the third version of the language. The design
of this new version started in 2012 to take advantage of more than 10 years of academic
and industrial experience accumulated with the previous versions (Prosvirnova et al.,
2013). AltaRica 3.0 can be described by the following equation.

GTS+ S2ML = AltaRica 3.0 (1)

The above equation1 summarises an idea that goes much beyond risk and safety
analyses and that can be stated as follows. Any behavioural description language
is made of two parts: a mathematical framework to describe behaviours and a set
of constructs to structure models. In the case of AltaRica 3.0, the mathematical
framework is the notion of guarded transition systems (GTS), see Rauzy (2008); Batteux
et al. (2017) for in depth presentations. GTS are state automata. They have been
designed to increase as much as possible the expressive power of the language without
increasing the computational cost of assessment algorithms. S2ML stands for system
structure modelling language (Batteux et al., 2015). S2ML gathers in a coherent way
structuring constructs stemmed from object-oriented programming, (see, e.g., Abadi and
Cardelli, 1998), and prototype-oriented programming, (see, e.g., Noble et al., 1999). The
combination of GTS and S2ML results in a powerful, versatile language which exploits
in an optimum way assessment algorithms.

It is of primary importance, in order to make the modelling process efficient, to
reuse as much as possible modelling components within models and between models.
In languages such a Modelica (Fritzson, 2015), this goal is achieved via the design
of libraries of on-the-shelf ready-to-use modelling components. Reusing components
is also possible in probabilistic risk and safety analyses, but to a much lesser extent.
The reason is that these analyses represent systems at a high level of abstraction.
Modelling components, except for very basic ones, tend thus to be specific to each
system. In AltaRica 3.0, reuse is mostly achieved by the design of modelling patterns,
i.e., examples of models representing remarkable features of the system under study.
Once identified, patterns can be duplicated and adjusted for specific needs, see, e.g.,
Kehren et al. (2004) for a preliminary study and Kloul and Rauzy (2017) for a
recent application. Patterns are pervasive in engineering. They have been developed
for instance in the field of technical system architecture (Maier, 2009), as well as in
software engineering (Gamma et al., 1994). Patterns are not only a mean to organise and
to document models, but also and more fundamentally a way to reason about systems
under study.

It is probably too early to design a taxonomy of modelling patterns encountered
in operational performance analyses. For the time being, we classify patterns into
two categories: behavioural patterns that aim at describing the behaviour of a single
component or a small group of components, and architectural patterns that aim at
describing the whole model organisation. We present and discuss here five patterns of
each category.

The contribution of this article is thus twofold: first, it introduces the reader with
the AltaRica 3.0 technology; second, it studies some of the most common modelling
patterns encountered in probabilistic risk and safety analyses.

The reminder of this article is organised as follows. Section 2 introduces basic
concepts of the language via the behavioural pattern ‘repairable unit’ and two
fundamental architectural patterns: the ‘structural decomposition’ and ‘hierarchical



AltaRica 3.0 in ten modelling patterns 137

block diagram’ patterns. Section 3 describes four common behavioural patterns: the
‘periodically tested unit’, ‘warm redundancy’, ‘shared resource’ and ‘common cause
failure’ patterns. Section 4 describes three advanced architectural patterns: the ‘reliability
network’, ‘production tree’, and ‘monitored system’ patterns. Finally, Section 5 gives a
snapshot on assessment tools and concludes the article.

2 Getting started

2.1 Guarded transition systems

GTS, introduced in Rauzy (2008), are at the core of AltaRica 3.0. Formally, a guarded
transition system is a quintuple ⟨V, E, T, A, ι⟩, where:

• V is a set of variables. Each variable v of V has a type, i.e., can take its value in
a certain set of constants (Booleans, integers, reals or set of symbolic constants),
called its domain and denoted by dom(v). V is actually the disjoint union of two
subsets S and F , where S is the subset of state variables and F is the subset of
flow variables.

• E is a set of events. Each event e of E can be associated with a non-decreasing
invertible function delaye from [0, 1] to R+ ∪ {+∞}. The inverse delay−1

e of
this function is a cumulative probability distribution.

• T is a set of transitions. A transition t is a triple ⟨e, g, a⟩, denoted by g
e−→ a,

where e is an event of E, g is a Boolean condition on variables of V called the
guard of the transition, and a is an instruction, called the action of the transition,
that changes the value of (some of) the state variables.

• A is an instruction, called the assertion, that calculates the values of flow
variables from the values of state variables.

• Finally, ι is a function that gives the initial value of state variables and the default
value of flow variables.

As an illustration, we shall consider our first behavioural pattern.

Modeling Pattern 1 (repairable unit): We call repairable unit a component that may fail
and be repaired.

The guarded transition system for such a unit is graphically represented Figure 1.
The corresponding AltaRica 3.0 code is given Figure 2.
This modelling component is reused in many different models and often many times
within a model. For this reason, it is declared as a class in the code of Figure 2
(lines 3–12). A class is an on-the-shelf modelling component. It can be instantiated as
many times as necessary into models.

The state of a unit is represented by a variable named state (declared line 4) that
takes its value in the domain RepairableUnitState (declared line 1). This domain
consists of the two symbolic constants WORKING and FAILED. Initially, the unit is
working, so the attribute init of the variable state is set to WORKING. This attribute
indicates also that state is a state variable.



138 M. Batteux et al.

Figure 1 Graphical representation of the guarded transition system for a repairable unit

_state==WORKING _state==FAILED

failure

repair

Figure 2 AltaRica 3.0 code for the guarded transition system pictured Figure 1 (see online
version for colours)AltaRica 3.0 in 10 Modeling Patterns 5

1 domain RepairableUnitState {WORKING , FAILED}
2

3 class RepairableUnit
4 RepairableUnitState _state (init = WORKING );
5 event failure (delay = exponential(lambda ));
6 event repair (delay = Dirac(tau));
7 parameter Real lambda = 1.0e-4;
8 parameter Real tau = 12;
9 transition

10 failure: _state == WORKING -> _state := FAILED;
11 repair: _state == FAILED -> _state := WORKING;
12 end

Figure 2: AltaRica 3.0 code for the guarded transition system pictured Figure 1.

that goes the reverse way. In the code of Figure 2, events failure and repair (declared

respectively lines 5 and 6) are associated with respectively a delay obeying the inverse of

a negative exponential distribution of parameter lambda and constant delay tau. These

parameters are declared respectively lines 7 and 8. AltaRica 3.0 provides several built-in

distributions, like Dirac, exponential, Weibull as well as empirical distributions (given as a

list of points).

AltaRica 3.0 comes with a standard library that declares a number of classes such

as RepairableUnit to represent various types of components. These classes encode

behavioral patterns. We shall see now examples of structural patterns.

2.2 Composition

The class RepairableUnit involves no flow variable and therefore no assertion. Flow

variables are mainly a mean to connect components. The composition of two (or more)

guarded transition systems is actually a guarded transition system.

Formally, let M1 : 〈V1, E1, T1, A1, ι1〉 and M2 : 〈V2, E2, T2, A2, ι2〉 be two guarded

transition systems. Then M1 ⊗M2 is simply the guarded transition system 〈V,E, T,A, ι〉
such that V = V1 ∪ V2, E = E1 ∪ E2, T = T1 ∪ T2, A = A2 ◦A1 and ι = ι2 ◦ ι1.

This means that models can be obtained by composing smaller models.

The structural decomposition pattern is a typical example of composition of components.

It is widely used to represent functional and physical breakdowns of systems, see e.g. [37].

It works as follows.

Modeling Pattern 2 (Structural decomposition) A structural decomposition consists of:

– A hierarchy of components, each with its own behavior represented by means of states
and transitions. Each component in the hierarchy has a number of parents (possibly
none) and a number of children (possibly none).

– A description of interactions between parents and children components, which is
represented by flow variables and assertions.

Components are thus organized into a directed acyclic graph. Components are nodes of the
graph. Links parent-child are edges of the graph. The graph is acyclic, therefore there is

As the unit is repairable, it has two transitions: a failure transition (declared line 10)
that goes from the state working to the state failed and a repair transition (declared
line 11) that goes the reverse way. In the code of Figure 2, events failure and repair
(declared respectively lines 5 and 6) are associated with respectively a delay obeying the
inverse of a negative exponential distribution of parameter lambda and constant delay
tau. These parameters are declared respectively lines 7 and 8. AltaRica 3.0 provides
several built-in distributions, like Dirac, exponential, Weibull as well as empirical
distributions (given as a list of points).

AltaRica 3.0 comes with a standard library that declares a number of classes such
as RepairableUnit to represent various types of components. These classes encode
behavioural patterns. We shall see now examples of structural patterns.

2.2 Composition

The class RepairableUnit involves no flow variable and therefore no assertion. Flow
variables are mainly a mean to connect components. The composition of two (or more)
GTS is actually a guarded transition system.

Formally, let M1 : ⟨V1, E1, T1, A1, ι1⟩ and M2 : ⟨V2, E2, T2, A2, ι2⟩ be two
GTS. Then M1 ⊗M2 is simply the guarded transition system ⟨V, E, T, A, ι⟩ such that
V = V1 ∪ V2, E = E1 ∪ E2, T = T1 ∪ T2, A = A2 ◦A1 and ι = ι2 ◦ ι1.

This means that models can be obtained by composing smaller models.
The structural decomposition pattern is a typical example of composition of

components. It is widely used to represent functional and physical breakdowns of
systems (see, e.g., Krob, 2017). It works as follows.



AltaRica 3.0 in ten modelling patterns 139

Modelling Pattern 2 (structural decomposition): A structural decomposition consists of:

• A hierarchy of components, each with its own behaviour represented by means of
states and transitions. Each component in the hierarchy has a number of parents
(possibly none) and a number of children (possibly none).

• A description of interactions between parents and children components, which is
represented by flow variables and assertions.

Components are thus organised into a directed acyclic graph. Components are nodes of
the graph. Links parent-child are edges of the graph. The graph is acyclic, therefore
there is no loop in the hierarchy. If each component has at most one parent, then the
hierarchy is a tree.

Fault trees are examples of models that obey the structural decomposition pattern.
Consider for instance the fault tree pictured Figure 3.

Figure 3 A fault tree

GC1

Top

C1 GB1

B1 GA

A1 A2

GB2 C2

GC2

B2

This fault tree is made of 6 basic events: A1, A2, B1, B2, C1 and C2 and 6 internal
events: top (the top event), GC1, GC2, GB1, GB2 and GA. Events are actually organised
into a directed acyclic graph (and not just a tree because the event GA has two parents:
GB1 and GB2).

Fault trees are a degenerated case of structural decomposition: first, only leaves of
the hierarchy carry out behaviours; second, the communication goes only from children
to parents. For this reason, it is not necessary to represent internal events explicitly as
components, assertions suffice.

Assuming basic events of our tree represent failed states of repairable units (as
described above), the AltaRica 3.0 code for this fault tree could be as given in Figure 4.

This code declares first the class BasicEventForRepairableUnit to encode basic
events (lines 1–6). This class inherits from the class RepairableUnit (via the extends
clause, line 2). It means that a BasicEventForRepairableUnit is a RepairableUnit
with additional properties. In this case, a Boolean flow variable failed is declared
(line 3). Its default value is set to false via the attribute reset. This attribute indicates



140 M. Batteux et al.

also that failed is a flow variable. Finally, the assertion line 5 tells how the value of
the flow variable is calculated from the value of the state variable. The flow variable
failed exports the state of the component and will be used to communicate this state
to the parent components.

Figure 4 AltaRica 3.0 code for the fault tree pictured Figure 3 (see online version for colours)AltaRica 3.0 in 10 Modeling Patterns 7

1 class BasicEventForRepairableUnit
2 extends RepairableUnit;
3 Boolean failed(reset = false);
4 assertion
5 failed := _state == FAILED;
6 end
7

8 block FaultTree
9 BasicEventForRepairableUnit A1, A2(lambda =1.0e-5);

10 BasicEventForRepairableUnit B1, B2(lambda =2.0e-5);
11 BasicEventForRepairableUnit C1, C2(lambda =1.0e-7,
12 tau =24);
13 Boolean Top , GA , GB1 , GB2 , GC1 , GC2 (reset = false);
14 assertion
15 Top := GC1 and GC2;
16 GC1 := C1.failed or GB1;
17 GC2 := C2.failed or GB2;
18 GB1 := B1.failed or GA;
19 GB2 := B2.failed or GA;
20 GA := A1.failed and A2.failed;
21 observer Boolean failed = Top;
22 end

Figure 4: AltaRica 3.0 code for the fault tree pictured Figure 3.

consists then simply in one equation per internal event, telling how the value of the internal

event is calculated from the values of its children (line 15-20). Variables declared inside a

component (prototype or instance of class) are accessed via the dot notation: C1.failed
denotes the variable failed of the component C1.

In the code of Figure 4, the values of parameters lambda and tau of basic events are

redefined at instantiation, when necessary. It is even possible to change the distributions

themselves at instantiation. This makes it possible to design generic classes for components.

Note that it would be possible to use other types for basic events. We may for instance

imagine that some of the components are not repairable. More complex schemes will be

presented in the next section.

Note also that the fault tree has been declared as a prototype. There are actually little

chance, if any, for this modeling component to be reused somewhere. It is definitely

specific to the system under study, conversely to the components RepairableUnit
and BasicEventForRepairableUnit that are reused several times in this and other

models. We shall see that some constructs are only available on prototypes, making the

distinction between prototypes and classes of further interest.

The code declares the Boolean observer failed (line 21). Observers do not play any

role in the behavioral description of the model. They are updated after each transition firing.

They are used to define and to calculate performance indicators. Observers can be seen as

the interface of the model for the assessment tools. They make it possible to optimize the

code, for instance by removing variables, without disturbing the assessment of indicators.

The fault tree itself is encoded as prototype, i.e., a modelling component with a unique
occurrence (lines 8–22). Prototypes are introduced by the keyword block.

The block FaultTree declares as many instances of
BasicEventForRepairableUnit as there are basic events in the fault tree (lines 9–12)
and as many Boolean flow variables as there are internal events (line 13). The assertion
consists then simply in one equation per internal event, telling how the value of the
internal event is calculated from the values of its children (line 15–20). Variables
declared inside a component (prototype or instance of class) are accessed via the dot
notation: C1.failed denotes the variable failed of the component C1.

In the code of Figure 4, the values of parameters lambda and tau of basic
events are redefined at instantiation, when necessary. It is even possible to change the
distributions themselves at instantiation. This makes it possible to design generic classes
for components.

Note that it would be possible to use other types for basic events. We may
for instance imagine that some of the components are not repairable. More complex
schemes will be presented in the next section.

Note also that the fault tree has been declared as a prototype. There are actually little
chance, if any, for this modelling component to be reused somewhere. It is definitely
specific to the system under study, conversely to the components RepairableUnit
and BasicEventForRepairableUnit that are reused several times in this and other



AltaRica 3.0 in ten modelling patterns 141

models. We shall see that some constructs are only available on prototypes, making the
distinction between prototypes and classes of further interest.

The code declares the Boolean observer failed (line 21). Observers do not play any
role in the behavioural description of the model. They are updated after each transition
firing. They are used to define and to calculate performance indicators. Observers can
be seen as the interface of the model for the assessment tools. They make it possible to
optimise the code, for instance by removing variables, without disturbing the assessment
of indicators.

2.3 Semantics

The semantics of a guarded transition system M : ⟨V = S ⊎ F, E, T, A, ι⟩ is defined
as the set of its possible executions. To define formally the executions, we need to
introduce the notions of state and schedule.

A state σ of M is valuation of variables of V verifying σ(F ) = A(σ(S)).
A schedule of M is a function from T to R+ ∪ {+∞}. A schedule Γ is compatible

with a state σ and a date d ∈ R+ if for all transitions t : G
e−→ P of T , d ≤ Γ(t) if

G(σ) = true and Γ(t) = +∞ otherwise.
Intuitively, an execution of M is a sequence:

⟨σ0, d0,Γ0⟩
t1−→ ⟨σ1, d1,Γ1⟩

t2−→ . . .
tn−→ ⟨σn, dn,Γn⟩

where n ≥ 0, the σi’s are states of M , the di’s are dates, i.e., non-negative real numbers
verifying 0 = d0 ≤ d1 ≤ . . . ≤ dn, each Γi is a schedule compatible with σi and di and
finally the ti’s are transitions of M .

Formally, the set of valid executions is defined recursively as follows.
The empty execution ⟨σ0, 0,Γ0⟩ is a valid execution if σ0(S) = ι, σ0(F ) = A(ι)

and the schedule Γ0 is such that for all transitions t : G e−→ P of T :

• Γ0(t) = delaye(t) for some z ∈ [0, 1] if G(ι) = true.

• Γ0(t) = +∞ if G(ι) = false.

Now, if Λ = ⟨σ0, d0,Γ0⟩
t1−→ . . .

tn−→ ⟨σn, dn,Γn⟩, n ≥ 0, is a valid execution, then so
is the execution Λ

tn+1−−−→ ⟨σn+1, dn+1,Γn+1⟩ if the following conditions hold, assuming
tn+1 = Gn+1

en+1−−−→ Pn+1.

• Gn+1(σn) = true.

• σn+1 = A(Pn+1(σn)), i.e., the firing of the transition tn+1 is performed in two
steps: first, state variables are updated by means of the action Pn+1 of the
transition, then flow variables are updated by means of the assertion A.

• dn+1 = Γn(tn+1) and there is no transition t of T such that Γn(t) < Γn(tn+1).

• Γn+1 is obtained from Γn by applying the following rules to all transitions
t : G

e−→ P of T .

1 If G(σn+1) = true, then:

a If G(σn) = true and t ̸= tn+1, i.e., if the transition was already
scheduled, then Γn+1(t) = Γn(t), i.e., the previous firing date is kept.



142 M. Batteux et al.

b Otherwise, Γn+1(t) = dn+1 + delaye(z) for some z ∈ [0, 1], i.e., a new
firing date is chosen.

2 If G(σn+1) = false, then Γn+1(t) = +∞.

Note that executions are fully determined by the choices of the z’s.

Example

In our example, there are two types of delays: exponential and Dirac. Figure 5 shows
how their values are calculated from a number z ∈ [0, 1].

Figure 5 Delays as inverse of cumulative probability distributions, (a) exponential delay
(b) Dirac delay

z

delaye(z)
(a)

z

delaye(z)
(b)

A possible execution could be as follows.
At time 0, all state variables take the value WORKING, all the flow variables take the

value false and the six transitions failure are fireable. The initial schedule could be
for instance as follows.

A1.failure: 5849.45 B1.failure: 7068.84 C1.failure: 3629.63
A2.failure: 7406.81 B2.failure: 227.47 C2.failure: 1037.08

As B2.failure has the earliest firing date, it is fired (at 227.47). After its firing,
B2. state takes the value FAILED, B2.failed, GB2 and GC2 take the value true, and
the transition B2.repair gets fireable and is scheduled at 227.47 + 12 = 239.47. The
other variables and transitions stay unchanged.

A1.failure: 5849.45 B1.failure: 7068.84 C1.failure: 3629.63
A2.failure: 7406.81 B2.repair: 239.47 C2.failure: 1037.08

As B2.repair has the earliest firing date, it is fired (at 239.47). After its firing, all state
variables take back the value FAILED, all flow variables take back the value false, and
the transition B2.failure gets fireable again and is scheduled for instance at 239.47 +
2788.84 = 3128.21. The other transitions stay unchanged.

A1.failure: 5849.45 B1.failure: 7068.84 C1.failure: 3629.63
A2.failure: 7406.81 B2.failure: 3128.21 C2.failure: 1037.08



AltaRica 3.0 in ten modelling patterns 143

And so on.

2.4 Another fundamental architectural pattern

Another very common and fundamental architectural pattern consists in representing a
system as a hierarchy of communicating blocks:

Modelling Pattern 3 (hierarchical block diagram): A hierarchical block diagram
consists of two types of blocks:

• Basic blocks that represent components of the system and that carry out the
behaviour of these components.

• Internal blocks that may contain other internal and basic blocks.

Blocks may have ports that represent their interface. Ports are connected via links. Such
hierarchical block diagrams are pervasive in model-based systems engineering. They
are used in modelling languages as diverse as Matlab/Simulink (Klee and Allen, 2011),
Modelica (Fritzson, 2015), Lustre (Halbwachs et al., 1991), SysML (Friedenthal et al.,
2011), and many others.

As an illustration, consider the system pictured Figure 6.

Figure 6 A hierarchical block diagram

A1 B1

A2 B2

C1

C2

CAB

This system is made of the two subsystems AB and C in series. The subsystem AB is
made of four basic units A1, A2, B1 and B2. The subsystem C is made of two basic units
C1 and C2. Components are connected from left to right: the inputs of A1 and A2 are
connected to two inputs. The inputs of B1 and B2 are connected to both outputs of A1
and A2. The inputs of C1 and C2 are connected respectively to the outputs of B1 and
B2. Finally, the output of the system aggregates the outputs of C1 and C2.

If the basic units of this hierarchical block diagram are repairable units described
by our modelling pattern 1, then the above description is just a (hierarchical) reliability
block diagram.

The AltaRica 3.0 code for this diagram is given Figure 7.



144 M. Batteux et al.

Figure 7 AltaRica 3.0 code for hierarchical reliability block diagram pictured Figure 6
(see online version for colours)

AltaRica 3.0 in 10 Modeling Patterns 11

1 class BasicBlockForRepairableUnit
2 extends RepairableUnit;
3 Boolean input , output(reset = false);
4 assertion
5 output := _state == WORKING and input;
6 end
7

8 block Plant
9 Boolean input1 , input2 (reset = true);

10 block AB
11 BasicBlockForRepairableUnit A1, A2, B1, B2;
12 assertion
13 B1.input := A1.output or A2.output;
14 B2.input := A1.output or A2.output;
15 end
16 block C
17 BasicBlockForRepairableUnit C1, C2
18 (lambda = lambdaC );
19 parameter Real lambdaC = 2.0e-6;
20 end
21 Boolean output (reset = false);
22 assertion
23 input1 := true;
24 input2 := true;
25 AB.A1.input := input1;
26 AB.A2.input := input2;
27 C.C1.input := AB.B1.output;
28 C.C2.input := AB.B2.output;
29 output := C.C1.output or C.C2.output;
30 observer Boolean failed = not C.output;
31 end

Figure 7: AltaRica 3.0 code for hierarchical reliability block diagram pictured Figure 6.
This code starts by declaring a class BasicBlockForRepairableUnit for basic blocks.
This class is similar to the class BasicEventForRepairableUnit, except it describes
the transfer function between the input of the block and its output.

The system is declared as a block (lines 8–31). The block Plant declares two
sub-blocks AB and C (respectively lines 10–15 and 16–20). These sub-blocks declare in
turn instances of the class BasicBlockForRepairableUnit: A1, A2, B1 and B2 for the
sub-block AB (line 11), C1 and C2 for the sub-block C (line 18). The declaration of C1
and C2 modifies the value of the parameter lambda. Assertions at system and sub-block
levels realise the connections.

It would have been indeed possible to declare classes for sub-blocks AB and C
and then to instantiate them into the block Plant. However, as these sub-blocks
have a unique occurrence, it is more natural to declare them as prototypes. Moreover,
prototypes make it possible to edit different levels of the hierarchy in the same view.
For instance, it is possible to modify connections in the inner block AB while editing
the outer block Plant. This is not possible with the class/instance mechanism because
it is not allowed to modify a class from one of its instances.



AltaRica 3.0 in ten modelling patterns 145

2.5 Discussion

AltaRica 3.0 is agnostic: names are used to make clear what blocks, variables and events
represent, but a model would be assessed in the same way if objects would be named
X, Y, Z. Moreover, the naming conventions we used here are just a personal choice of
the authors (e.g., we write symbolic constants with capital letters, prefix state variables
with an underscore, capitalise names of blocks and classes).

AltaRica 3.0 is primarily a textual language. Graphical representations, such as those
of Figures 1, 3 and 6 are an excellent communication means. They made the success of
languages such as MATLAB/Simulink (Klee and Allen, 2011). We use them as much
as possible. However, as soon as the model gets complex, they cannot embed all of its
details. Moreover, the same model can be looked at from different angles, therefore with
different graphical representations. In other words, the text is the reference, even though
modelling environments make it possible to create models by dragging and dropping
graphical representations (icons). The interested reader can look at Fuhrmann (2011) for
an interesting discussion on the pragmatics of graphical modelling.

3 Behavioural patterns

In this section, we shall review some very common patterns used to represent the
behaviours of components, beside the RepairableUnit pattern we have already seen.

3.1 Advanced failure models

The RepairableUnit pattern corresponds well to continuously monitored components.
In process industry, there are however many components that are only periodically
inspected or tested, e.g., shutdown valves that are tested by means of partial stroke.
Safety standards and best practice guides ((IEC 61508, 2010; ISO/TR 12489, 2013) pay
a lot of attention to this kind of components. Hence our next modelling pattern.

Modelling Pattern 4 (periodically tested component): A periodically tested component
is a component:

• That alternates operation and test phases.

• Whose failures are only revealed thanks to the tests.

It is moreover assumed that the phases are organised on a calendar base, i.e., they have
a fixed duration and their chaining is decided once for all. This (possible) approximation
makes it possible to consider each component independently.

The behaviour of periodically tested components is conveniently described by
multiphase Markov chains like the one pictured Figure 8 (indeed when occurrences of
failures and repairs obey the Markovian hypothesis).
The component switches periodically from operation to test phases. The operation
and test phases last respectively π and τ hours. A first operation phase that lasts
θ is introduced so to be able to represent staggered tests when considering a
multi-components system. The component fails with a failure rate λ. It is assumed that
the component cannot fail during the test. The state of the component is thus represented



146 M. Batteux et al.

by means of three values (represented from top to bottom on the figure): its actual state,
its observed state and its phase. Stochastic transitions are represented with plain arrows
while deterministic transitions are represented with dashed arrows.

Figure 8 Multiphase Markov chain for a periodically tested component

WORKING
WORKING
TEST

FAILED
WORKING
TEST

failure(l)

FAILED
FAILED
TEST

FAILED
WORKING
OPERATION

FAILED
FAILED

OPERATION

completeTest(t)

startTest(p) startTest(p) startTest(p)

completeTest(t) completeTest(t)

failure(l)

WORKING
WORKING

OPERATION1

FAILED
WORKING

OPERATION1

startTest1(q)

WORKING
WORKING
OPERATION

startTest1(q)

Figure 9 AltaRica 3.0 code for multiphase Markov chain pictured Figure 8 (see online
version for colours)

14 M. Batteux et al.

1 domain State {WORKING , FAILED}
2 domain Phase {OPERATION1 , OPERATION , TEST}
3

4 class PeriodicallyTestedComponent
5 State _actualState (init = WORKING );
6 State _observedState (init = WORKING );
7 Phase _phase (init = OPERATION1 );
8 event failure (delay = exponential(lambda ));
9 event startTest1 (delay = Dirac(theta ));

10 event startTest (delay = Dirac(pi));
11 event completeTest (delay = Dirac(tau));
12 parameter Real lambda = 1.0e-6;
13 parameter Real theta = 2188;
14 parameter Real pi = 4378;
15 parameter Real tau = 2;
16 transition
17 failure: _actualState == WORKING and _phase !=TEST
18 -> _actualState := FAILED;
19 startTest1: _phase == OPERATION1 -> _phase := TEST;
20 startTest: _phase == OPERATION -> _phase := TEST;
21 completeTest: _phase ==TEST -> {
22 _phase := OPERATION;
23 _observedState := _actualState;
24 }
25 end

Figure 9: AltaRica 3.0 code for multiphase Markov chain pictured Figure 8.

3.2 Dependent Behaviors

So far, the patterns we proposed make “only” possible to represent combinatorial models

such as fault trees or reliability block diagrams in a unified way and provide a mean to extend

failure models for basic components. In a word, we stayed in the realm of combinatorial

models.

Combinatorial models are not sufficient when dependencies amongst events have to be

represented (although some approximations can be proposed, see e.g. [46]). Dependencies

typically arise when a component is in cold or warm redundancy of another.

This leads us to our next pattern.

Modeling Pattern 5 (Warm redundancy) A component is said in warm redundancy (of
another one) if the following holds.

– The component is initially in standby mode. It is put in operation when there is a
demand, i.e. typically when another component fails.

– The component may fail both in standby mode and in operation, although with different
failure distributions, as a component in operation is more stressed than a component
in standby.

– The attempt to start the component may be unsuccessful (failure on demand).



AltaRica 3.0 in ten modelling patterns 147

The AltaRica 3.0 code for such a component is given Figure 9. This code is a direct
translation of the multiphase Markov chain. It obeys the same principles as the one for
repairable units, except that the state of the component is now described by means of
three state variables: actualState, observedState and phase.

The class PeriodicallyTestedComponent can be instantiated everywhere
convenient (possibly after some adjustments), in particular in models built according
to the structural decomposition pattern (pattern 2) and the hierarchical block diagram
pattern (pattern 3).

More advanced models for periodically tested components are discussed in Cacheux
et al. (2013). These models can be easily implemented in AltaRica 3.0 as well.

In the above pattern, the two phases alternate periodically after an initial phase.
Many articles have been published that study phased mission systems, i.e., systems
whose mission is decomposed into a finite number of successive phases, e.g. taxiing,
take-off, cruise, landing and taxiing again for a commercial airliner. The first report
work on this topic the authors could find was one by Esary and Ziehms (see Ziehms,
1974; Esary and Ziehms, 1975). In phased-mission systems, a component may be active
only in some phases. Moreover, the causes of failure of the system may be different
from one phase to the other. It is in general assumed that if the component is failed in
one phase, then it remains failed in the subsequent phases. In any cases, it is fairly easy
to adjust the above pattern to represent components of phased-mission systems.

3.2 Dependent behaviours

So far, the patterns we proposed make ‘only’ possible to represent combinatorial models
such as fault trees or reliability block diagrams in a unified way and provide a mean
to extend failure models for basic components. In a word, we stayed in the realm of
combinatorial models.

Combinatorial models are not sufficient when dependencies amongst events have
to be represented [although some approximations can be proposed, (see, e.g., Vaurio,
2001)]. Dependencies typically arise when a component is in cold or warm redundancy
of another.

This leads us to our next pattern.

Modelling Pattern 5 (warm redundancy): A component is said in warm redundancy (of
another one) if the following holds.

• The component is initially in standby mode. It is put in operation when there is a
demand, i.e., typically when another component fails.

• The component may fail both in standby mode and in operation, although with
different failure distributions, as a component in operation is more stressed than a
component in standby.

• The attempt to start the component may be unsuccessful (failure on demand).

• The component may be repaired.

• The component is put back in standby mode after a repair or when it is not
demanded anymore.



148 M. Batteux et al.

The above definition is quite general and can be indeed tuned to more specific cases,
such as cold redundancies where the component is assumed to be safe when it is in
standby mode.

Figure 10 shows the states/transitions diagram representing the behaviour of such
component. Figure 11 gives the corresponding AltaRica 3.0 code.

Figure 10 States/transitions diagram for a component in warm redundancy

STANDBY WORKING
failure(l)

repair(m)

FAILED

dormantFailure(l*)

turnOn(demand, 1-g)

failureOnDemand(demand, g)

turnOff(not demand)

Figure 11 AltaRica 3.0 code for a component in warm redundancy (see online version
for colours)

16 M. Batteux et al.

1 domain State {STANDBY , WORKING , FAILED}
2

3 class ComponentInWarmRedundancy
4 State _state (init = STANDBY );
5 Boolean demand (reset = false);
6 event turnOn (delay = Dirac(0),
7 expectation = 1-gamma );
8 event failureOnDemand (delay = Dirac(0),
9 expectation = gamma );

10 event turnOff (delay = Dirac (0));
11 event failure (delay = exponential(lambda ));
12 event dormantFailure(delay = exponential(lambdaStar ));
13 event repair (delay = exponential(mu));
14 parameter Real gamma = 0.02;
15 parameter Real lambda = 1.0e-4;
16 parameter Real lambdaStar = 1.0e-6;
17 parameter Real mu = 0.1;
18 transition
19 turnOn: _state == STANDBY and demand ->
20 _state := WORKING;
21 failureOnDemand: _state == STANDBY and demand ->
22 _state := FAILED;
23 turnOff: _state == WORKING and not demand ->
24 _state := STANDBY;
25 failure: _state == WORKING -> _state := FAILED;
26 dormantFailure: _state == STANDBY ->
27 _state := FAILED;
28 repair: _state == FAILED -> _state := STANDBY;
29 end

Figure 11: AltaRica 3.0 code for a component in warm redundancy.



AltaRica 3.0 in ten modelling patterns 149

This model involves a new type of stochastic transitions. When the component is in
standby mode and gets demanded, technically when the input flow variable demand
becomes true, the component reacts immediately: the two transitions turnOn and
failureOnDemand (defined lines 20 and 20) become fireable. As they are labelled
with events associated null (Dirac) delays (defined lines 7 and 9), one of them is
instantaneously fired. The choice is non-deterministic: the attribute expectation can
be seen as a weight. Assume transitions labelled with events e1, . . .en are in competition
to be fired at the same exact date and that the expectation’s of these events are
respectively w1, . . .wn. Then, the transition labelled with the event ei is fired with a
probability wi/

∑n
j=1 wj . In our model, the weights of turnOn and failureOnDemand

are determined by the parameter γ which can be seen as the probability of failure on
demand.

Figure 12 AltaRica 3.0 code for trains in warm redundancy (see online version for colours)AltaRica 3.0 in 10 Modeling Patterns 17

1 class Train
2 ComponentInWarmRedundancy A, B;
3 Boolean demand , failed(reset = false);
4 assertion
5 A.demand := demand;
6 B.demand := demand;
7 failed := A._state == FAILED or B._state == FAILED;
8 end
9

10 block Plant
11 Train mainTrain , spareTrain;
12 Boolean failed(reset=false);
13 assertion
14 failed := mainTrain.failed and spareTrain.failed;
15 mainTrain.demand := not mainTrain.failed;
16 spareTrain.demand := mainTrain.failed;
17 end

Figure 12: AltaRica 3.0 code for trains in warm redundancy.

3.3 Synchronized Behaviors

In the above “warm redundancy” pattern, when the main component fails, the spare

component is immediately attempted to start. The failure of the former and start (or failure

on demand) of the latter occur at the same date, although in order. There are cases however

where two (or more) transitions occur exactly at the same time, without any ordering among

them, typically because they encode local effects of a global event.

As an illustration, consider two units A and B sharing the same resource R. R can be for

instance the repair team or a spare part. When the unit A gets the resource R, R becomes

simultaneously unavailable for B. A and R change of state at exactly the same time. This

idea is formalized by the following pattern.

Modeling Pattern 6 (Shared Resource) This pattern consists in two or more units sharing
the same set of resources.

– When one of the units gets one of the resources, this resource becomes simultaneously
unavailable for the other units.

– Symmetrically, when the unit releases the resource, the resource becomes
simultaneously available for the other units.

AltaRica 3.0 provides the powerful concept of synchronization to encode the “shared

resource” pattern. This concept has been originally introduced by Arnold and Nivat to

describe interactions between concurrent processes [47]. It is generalized in AltaRica 3.0.

Consider for example a system consisting in two units and a maintenance team. Assume

that the maintenance team can work on only one unit at a time. If a unit fails, it must

therefore wait until that the maintenance team is free to start being repaired. Once repaired,

it releases the resource, i.e. the maintenance team. A possible code for this system is given

Figure 13.

Components in cold/warm redundancy are used in combination with other components,
typically repairable components as defined by the pattern 1. They can be also used in
combination to implement redundancies between subsystems, as illustrated by the code
given Figure 12.

This code represents a system made of two trains: the main train and a spare train
in warm redundancy. Each train is made of two components in series. The idea is then
simple: the main train is demanded if it is not failed, while the spare train is demanded
if the main train is failed. The same principle applies with any two subsystems.

Note that initially the two components of the main train are in standby. But, as the
train is not failed, it is demanded. Therefore the two components are attempted to start.

3.3 Synchronised behaviours

In the above ‘warm redundancy’ pattern, when the main component fails, the spare
component is immediately attempted to start. The failure of the former and start (or
failure on demand) of the latter occur at the same date, although in order. There are
cases however where two (or more) transitions occur exactly at the same time, without
any ordering among them, typically because they encode local effects of a global event.



150 M. Batteux et al.

Figure 13 AltaRica 3.0 code for units sharing a maintenance team (see online version
for colours)

18 M. Batteux et al.

1 domain UnitState {WORKING , FAILED , REPAIR}
2

3 class Unit
4 UnitState _state(init=WORKING );
5 event failure(delay = exponential(lambda ));
6 event startRepair , completeRepair;
7 parameter Real lambda = 1.0e-4;
8 transition
9 failure: _state == WORKING -> _state := FAILED;

10 startRepair: _state == FAILED -> _state := REPAIR;
11 completeRepair: _state == REPAIR -> _state := WORKING;
12 end
13

14 domain MaintenanceTeamState {STANDBY , WORKING}
15

16 class MaintenanceTeam
17 MaintenanceTeamState _state(init=STANDBY );
18 event startJob , completeJob;
19 transition
20 startJob: _state == STANDBY -> _state := WORKING;
21 completeJob: _state == WORKING -> _state := STANDBY;
22 end
23

24 block System
25 Unit U1, U2(startRepair.hidden = true ,
26 completeRepair.hidden = true);
27 MaintenanceTeam M(startJob.hidden = true ,
28 completeJob.hidden = true);
29 event startRepair1 , startRepair2(delay = Dirac (0));
30 event completeRepair1 ,
31 completeRepair2(delay = exponential(mu));
32 parameter Real mu = 0.025;
33 transition
34 startRepair1 :!U1.startRepair & !M.startJob;
35 startRepair2 :!U2.startRepair & !M.startJob;
36 completeRepair1 :!U1.completeRepair & !M.completeJob;
37 completeRepair2 :!U2.completeRepair & !M.completeJob;
38 end

Figure 13: AltaRica 3.0 code for units sharing a maintenance team.
As an illustration, consider two units A and B sharing the same resource R. R can be
for instance the repair team or a spare part. When the unit A gets the resource R, R
becomes simultaneously unavailable for B. A and R change of state at exactly the same
time. This idea is formalised by the following pattern.

Modelling Pattern 6 (shared resource): This pattern consists in two or more units
sharing the same set of resources.

• When one of the units gets one of the resources, this resource becomes
simultaneously unavailable for the other units.



AltaRica 3.0 in ten modelling patterns 151

• Symmetrically, when the unit releases the resource, the resource becomes
simultaneously available for the other units.

AltaRica 3.0 provides the powerful concept of synchronisation to encode the ‘shared
resource’ pattern. This concept has been originally introduced by Arnold and Nivat to
describe interactions between concurrent processes (Arnold, 1994). It is generalised in
AltaRica 3.0.

Consider, for example, a system consisting in two units and a maintenance team.
Assume that the maintenance team can work on only one unit at a time. If a unit fails,
it must therefore wait until that the maintenance team is free to start being repaired.
Once repaired, it releases the resource, i.e., the maintenance team. A possible code for
this system is given in Figure 13.

In this code, the definitions of classes Unit and MaintenanceTeam are no
surprise. The block System declares events (lines 29–31). The corresponding transitions
(lines 31–37) synchronise transitions of components.
For instance, the transition startRepair1 results of the simultaneous firing of
transitions startRepair of unit U1 and startJob of the repair team. The modality
! prefixing the event name makes the corresponding transition mandatory: the global
transition startRepair1 can be fired only if local transitions U1.startRepair and
M.startJob are fireable. In other words, this transition is just equivalent to the
following one.

It is however much more convenient to declare local effect locally.
Instances of units and maintenance team are declared with the attribute hidden

of their events startRepair and completeRepair, respectively startJob and
completeJob, set to true (lines 26–28). This indicates that these events cannot be fired
individually, but only through synchronisations.

We shall see now a more complex synchronisation scheme, involving the modality ?.
Common cause failures are an important contributor to the risk in many technical

systems, e.g., in nuclear power plants, (see, e.g., Mosleh et al., 1998). There are many
types of common cause failures. We shall restrict our attention to the following category
(other types of common cause failures can be represented in AltaRica 3.0 as well, but
with other modelling patterns).

Modelling Pattern 7 (common cause failures): A common cause failure is an event:

• Impacting simultaneously several basic components;

• Failing all impacted components that are not already failed.

Fire or flooding are typical such events. Strictly speaking, common cause failures as
defined above cannot be described at basic component level since they involve several
of them. Their description in AltaRica 3.0 relies on a very important construct of the
language, namely the synchronisation of events.



152 M. Batteux et al.

The AltaRica 3.0 code that describes a common cause failure acting on three
repairable units is given Figure 14.

Figure 14 AltaRica 3.0 code describing a common cause failure to three repairable units
(see online version for colours)

AltaRica 3.0 in 10 Modeling Patterns 19

In this code, the definitions of classes Unit and MaintenanceTeam are no surprise.

The block System declares events (lines 29-31). The corresponding transitions (lines 34-

37) synchronize transitions of components.

For instance, the transition startRepair1 results of the simultaneous firing of

transitions startRepair of unit U1 and startJob of the repair team. The modality

! prefixing the event name makes the corresponding transition mandatory: the global

transition startRepair1 can be fired only if local transitions U1.startRepair and

M.startJob are fireable. In other words, this transition is just equivalent to the following

one.
startRepair1: U1._state == FAILED and M._state == STANDBY

-> { U1._state := REPAIR;
M._state := WORKING;

}

It is however much more convenient to declare local effect locally.

Instances of units and maintenance team are declared with the attribute hidden
of their events startRepair and completeRepair, respectively startJob and

completeJob, set to true (lines 26-28). This indicates that these events cannot be fired

individually, but only through synchronizations.

We shall see now a more complex synchronization scheme, involving the modality ?.

Common cause failures are an important contributor to the risk in many technical

systems, e.g. in nuclear power plants, see e.g. [48]. There are many types of common cause

failures. We shall restrict our attention to the following category (other types of common

cause failures can be represented in AltaRica 3.0 as well, but with other modeling patterns).

Modeling Pattern 7 (Common Cause Failures) A common cause failure is an event:

– Impacting simultaneously several basic components;

– Failing all impacted components that are not already failed.

Fire or flooding are typical such events. Strictly speaking, common cause failures as

defined above cannot be described at basic component level since they involve several of

them. Their description in AltaRica 3.0 relies on a very important construct of the language,

namely the synchronization of events.

The AltaRica 3.0 code that describes a common cause failure acting on three repairable

units is given Figure 14.

1 block Plant
2 RepairableUnit A, B, C;
3 event ccf (delay = exponential(ccfRate ));
4 parameter Real ccfRate = 1.0e-6;
5 transition
6 ccf: ?A.failure & ?B.failure & ?C.failure;
7 end

Figure 14: AltaRica 3.0 code describing a common cause failure to three repairable units.

The event and the transition representing the common cause failure are declared in the

block that aggregates the three components (lines 3 and 6). The transition line 6 synchronizes

The event and the transition representing the common cause failure are declared in
the block that aggregates the three components (lines 3 and 6). The transition line 6
synchronises the three events A.failure, B.failure and C.failure, i.e., attempts to
fire these three events simultaneously. The modality ? indicates that event it prefixes is
fired only if possible (a modality ! would indicate that event it prefixes is mandatory).
The transition labelled with ccf is fireable if at least one the three events is fireable,
i.e., if at least one of the guards of the individual transitions is satisfied in the current
state. Its firing consists in performing actions of individual transitions that can be fired.
Eventually, it is thus equivalent to the following code.

3.4 Discussion

The patterns presented in this section involve components that can be in more than two
states, but that still fundamentally either working or failed. It is sometimes interesting
to take into account degradation levels (and of course the transitions between these
levels), as discussed in the abundant literature on so-called multistate systems, (see, e.g.,
Lisnianski and Levitin, 2003; Natvig, 2010). Tools like HiP-HOPS provide means to
describe such systems (Papadopoulos et al., 2011). Rauzy and Yang proposed recently
a unifying algebraic framework, (see Rauzy and Yang, 2018).

Multistate systems are straightforward to represent in AltaRica 3.0 (for this reason
we do not introduce here a specific pattern). Figure 15 shows for instance how levels
of degradation can be composed thanks to dedicated operators.

Once declared, operators (and functions) can be used in actions of transitions and
assertions. Operators (and functions) in AltaRica 3.0 are similar to macro-instructions of
programming languages. The switch expression is equivalent to a cascade of if-then-else
expression: the conditions are looked at in turn and the first one which is satisfied
determines the value of the expression.



AltaRica 3.0 in ten modelling patterns 153

Figure 15 AltaRica 3.0 code for aggregation operators working on the WDFState domain
(see online version for colours)

20 M. Batteux et al.

the three events A.failure, B.failure and C.failure, i.e. attempts to fire these

three events simultaneously. The modality ? indicates that event it prefixes is fired only if

possible (a modality ! would indicate that event it prefixes is mandatory). The transition

labeled with ccf is fireable if at least one the three events is fireable, i.e. if at least one of

the guards of the individual transitions is satisfied in the current state. Its firing consists in

performing actions of individual transitions that can be fired. Eventually, it is thus equivalent

to the following code.

ccf: A._state == WORKING or B._state == WORKING or
C._state == WORKING -> {

if A._state == WORKING then A._state := FAILED;
if B._state == WORKING then B._state := FAILED;
if C._state == WORKING then C._state := FAILED;
}

3.4 Discussion

The patterns presented in this section involve components that can be in more than two

states, but that still fundamentally either working or failed. It is sometimes interesting to

take into account degradation levels (and of course the transitions between these levels), as

discussed in the abundant literature on so-called multistate systems, see e.g. [17, 18]. Tools

like HiP-HOPS provide means to describe such systems [19]. Rauzy and Yang proposed

recently a unifying algebraic framework, see [49].

Multistate systems are straightforward to represent in AltaRica 3.0 (for this reason we do

not introduce here a specific pattern). Figure 15 shows for instance how levels of degradation

can be composed thanks to dedicated operators.

1 domain WDFState {WORKING , DEGRADED , FAILED}
2

3 operator WDFState WDFMin(WDFState in1 , WDFState in2)
4 switch {
5 case in1== FAILED or in2== FAILED: FAILED
6 case in1== WORKING and in2== WORKING: WORKING
7 default: DEGRADED
8 }
9 end

10

11 operator WDFState WDFMax(WDFState in1 , WDFState in2 ,
12 WDFState out)
13 switch {
14 case in1== FAILED and in2== FAILED: FAILED
15 case in1== WORKING or in2== WORKING: WORKING
16 default: DEGRADED
17 }
18 end

Figure 15: AltaRica 3.0 code for aggregation operators working on theWDFState domain.

We presented here binary operators for a ternary logic for the sake of the simplicity.
It is of course possible to extend them to any multivalued logic (and any number of
arguments), (see, e.g., Malinowski, 2009) for a review.

4 Architectural patterns

In this section, we present three common architectural patterns to illustrate the
importance of this concept and the ability of AltaRica 3.0 to implement advanced
models.

4.1 Reliability networks

So far, all the models we considered are data-flow, i.e., that the information propagates
only one way between components. There are however risk/safety assessment models
in which the information can circulate in either directions, depending on the states of
the components. Reliability networks belong to this category of models. Although much
less popular than fault trees and reliability block diagrams, they have focused important
research efforts, (see, e.g., Colbourn, 1987; Shier, 1991) for two monographs on this
topics. The reason is that power and water distribution networks as well as several other
types of infrastructures are typically analysed as reliability networks.

A reliability network is a graph with two kinds of nodes: source nodes that produce
something (power, information, . . . ) and target nodes that consume and redistribute this
something. Nodes of both types may fail according to some probability distribution.
Edges are assumed to work perfectly.



154 M. Batteux et al.
Figure 16 A reliability network

T1

T2

S1 S2

T3

T4

T5

T6

As an illustration, consider the network pictured Figure 16. This network is made of the
two source nodes S1 and S2 and six target nodes T1, . . .T6.

In this network, edges are bidirectional. The information can thus circulate in
different directions, depending on the state of components. For instance, the node T6
can be powered by the node S1 via the nodes T2 and T4. In case T2 and S2 are failed,
T4 can be powered by the node S1 via the nodes T1, T3, T5 and finally T6.

Note that we do not loose any generality by assuming edges are perfect: an imperfect
edge between two nodes A and B can be represented as an imperfect node N and two
perfect edges form A to N and from N to B.

A typical question one may ask on such a networks is ‘what is the probability that
a specific node is a powered at time t’, i.e., what is the probability that there exists a
working path from one of the operating source nodes to that particular node.

Answering this question raises difficult algorithmic issues. Specialised algorithms
have been developed (Madre et al., 1994; Rauzy, 2003). As of today, AltaRica 3.0 is
the only modelling language embedding natively mechanisms to represent and assess
reliability networks, (see, Batteux et al., 2017) for in-depth explanations.

The solution is surprisingly simple and elegant. It relies on the following pattern.

Modelling Pattern 8 (reliability network): The reliability network pattern consists in a
network of components such that:

• Each component has a unique Boolean input and a unique Boolean output.

• The input of a component is defined as a coherent Boolean formula of the outputs
of the other nodes.

Whether each component is reachable, i.e., has at least one of its inputs true, depends
on the global state of the network.

Recall that a Boolean formula is coherent if it is built only with ‘and’, ‘or’ and
‘k-out-of-n’ connectives.

Assuming that each node of the reliability network pictured Figure 16 is
repairable, this network can be represented in AltaRica 3.0 using the class
BasicBlockForRepairableUnit defined Section 2.4 and suitable assertions, as shown
Figure 17.

The assertion of this model is ‘looped’, i.e., that variables depends eventually on
each other. AltaRica 3.0 fixpoint mechanism to update the value of flow variables after
each transition firing is able to deal efficiently with such dependencies (Batteux et al.,
2017).



AltaRica 3.0 in ten modelling patterns 155

Figure 17 AltaRica 3.0 code for the reliability network of Figure 16 (see online version
for colours)

22 M. Batteux et al.

A typical question one may ask on such a networks is “what is the probability that a

specific node is a powered at time t”, i.e. what is the probability that there exists a working

path from one of the operating source nodes to that particular node.

Answering this question raises difficult algorithmic issues. Specialized algorithms have

been developed [53, 54]. As of today, AltaRica 3.0 is the only modeling language embedding

natively mechanisms to represent and assess reliability networks, see [28] for in-depth

explanations.

The solution is surprisingly simple and elegant. It relies on the following pattern.

Modeling Pattern 8 (Reliability Network) The reliability network pattern consists in a
network of components such that:

– Each component has a unique Boolean input and a unique Boolean output.

– The input of a component is defined as a coherent Boolean formula of the outputs of
the other nodes.

Whether each component is reachable, i.e. has at least one of its inputs true, depends on
the global state of the network.

Recall that a Boolean formula is coherent if it is built only with “and”, “or” and “k-out-

of-n” connectives.

Assuming that each node of the reliability network pictured Figure 16 is

repairable, this network can be represented in AltaRica 3.0 using the class

BasicBlockForRepairableUnit defined Section 2.4 and suitable assertions, as

shown Figure 17.

1 block ReliabilityNetwork
2 BasicBlockForRepairableUnit S1, S2, T1, T2, T3 , T4 ,
3 T5 , T6;
4 assertion
5 S1.input := true;
6 S2.input := true;
7 T1.input := S1.output or T2.output or T3.output;
8 T2.input := S1.output or T1.output or T4.output;
9 T3.input := T1.output or T5.output;

10 T4.input := T2.output or T6.output;
11 T5.input := S2.output or T3.output or T6.output;
12 T6.input := S2.output or T4.output or T5.output;
13 end

Figure 17: AltaRica 3.0 code for the reliability network of Figure 16.

The assertion of this model is “looped” i.e. that variables depends eventually on each

other. AltaRica 3.0 fixpoint mechanism to update the value of flow variables after each

transition firing is able to deal efficiently with such dependencies [28].

4.2 Production systems

Many industrial processes can be represented as a hierarchical and oriented network
of treatment units. Each unit treats the production of upstream units and transfers it to
downstream units. The amount of products an unit is treating depends on its intrinsic
capacity, on the production of upstream units and the demand of downstream units.
There is thus a two-ways dependency between units.

When the organisation of production units is complex, optimising the production is
also a complex problem, involving typically the determination of the maximum flow
that can travel from source nodes to target nodes. Relatively efficient algorithms exists
to do so, e.g., the Ford-Fulkerson algorithm (Cormen et al., 2001), but calling such an
algorithm after each transition firing would be probably of a prohibitive cost. When
the production plant can be decomposed hierarchically, the following pattern, that has
been introduced and studied in Kloul and Rauzy (2017), makes it possible to solve the
problem elegantly.

Modelling Pattern 9 (production tree): A production tree consists in a hierarchy (a
tree) of components such that:

• Each component has a certain production capacity that depends on its intrinsic
capacity, its state, and the capacities of its subcomponents.

• Each component has a certain production objective and is in charge of
determining the production objectives of its subcomponents so to reach its own
objective.

• The production objective of a component never exceeds its production capacity.

As an illustration, consider a sub-system S of a certain system consisting of two
subsystems C and D. Assume that production policy consists in allocating the production
objective in priority to C. Assume finally that S does not fail at the same rate when it
is producing something and when it does not produce anything.

An AltaRica 3.0 code describing the system S is given in Figure 18.



156 M. Batteux et al.

Figure 18 AltaRica 3.0 code implementing a priority node in a production tree (see online
version for colours)

24 M. Batteux et al.

1 block S
2 extends ComponentInWarmRedundancy;
3 block C
4 // description of C
5 end
6 block D
7 // description of D
8 end
9 parameter Real intrisicCapacity = 110.0;

10 Real capacity(reset =0);
11 Real objective(reset =0);
12 assertion
13 capacity := switch {
14 case _state == FAILED: 0.0
15 case C.capacity+D.capacity >intrisicCapacity:
16 intrisicCapacity
17 default: C.capacity+D.capacity
18 };
19 if objective >C.capacity then {
20 C.objective := C.capacity;
21 D.objective := objective -C.capacity;
22 }
23 else {
24 C.objective := objective;
25 D.objective := 0;
26 }
27 demand := objective >0;
28 end

Figure 18: AltaRica 3.0 code implementing a priority node in a production tree.

The block S inherits from the class ComponentInWarmRedundancy (pattern 5). It
composes the two blocks C and D. Finally, it declares the parameter intrisicCapacity
and the two flow variables capacity and objective to represent the corresponding
quantities.

The capacity of S should be 0 if S is failed, and the minimum of its intrinsic capacity
and the sum of the capacities of C and D otherwise. This is directly translated into the
assertion line 13.

S must split the production objective between C and D, giving the priority to C. This
is again directly translated into the assertion line 19.

Finally, S must be started if its objective is not null and stopped otherwise, which is
done by setting the inherited variable demand accordingly (line 27).

It is very easy to adjust the code of Figure 18 to represent hierarchical components
that compose more than two components and/or that implement other production policies
such as production with units in series, or units in parallel (and a pro-rata allocation of
the production objective).

It is also worth to notice that by changing real flows to Boolean flows it is possible
to use the production tree pattern to encode dynamic fault trees, (see, e.g., Dugan et al.,
1992), as well as Boolean driven Markov process (Bouissou and Bon, 2003) applying
the translation proposed in Rauzy (2015).



AltaRica 3.0 in ten modelling patterns 157

4.3 Monitored systems

Maintenance policies have a strong impact on operational performance of systems,
for at least two reasons: first, a high reliability can only be achieved by means of
maintenance interventions; second these interventions, that often require to shutdown
at least partly the production, are in practice a major contributor to the system down
times. One of the today’s challenges of process industry is to move from calendar- or
time-based maintenance policies to condition-based maintenance policies, in order to
reduce down-times and beyond costs. If assessing the formers is well mastered, assessing
the latter raises difficult modelling issues.

Our next and last pattern is dedicated to the analysis of monitored systems. It has
been recently introduced and studied in Zhang et al. (2018).

Modelling Pattern 10 (monitored system): The monitored system pattern consists in
organising the model into four modules:

• A module dedicated to the description of the behaviour of units of the system.

• A module that calculates the actual state of the system from the states of the units.

• A module that represents the diagnostic made on the state of the system.

• Finally, a controller that makes operational decisions, including the scheduling of
maintenance interventions, based on the diagnostic and that broadcasts orders to
units so that they implement these decisions.

This pattern not only helps to organise models of monitored systems, but more
fundamentally provides a methodology to reason about these systems.

As an illustration, consider a two-out-of-three system made of periodically tested
units. The system is thus failed if at least two out of the three units are failed. In
this case, the production must be stopped immediately and a maintenance intervention
scheduled. There may be a significant delay between the time a maintenance
intervention is scheduled and the time it starts effectively. The production is stopped
during maintenance intervention. If one unit is failed, the system is degraded. In this
case, the production can go on, but a maintenance intervention must be scheduled. As
a unit is out of order during a test, it is dangerous to test a unit while another one is
failed because only the third unit remains in service. It is however necessary to take
that risk, because it is the only mean to detect that a second unit may be failed, and
therefore that the production must be stopped immediately. For the same reason, it is
better to stagger tests of the units.

Modelling this kind of systems is by no means easy. One has to handle intricated
stochastic and deterministic events, to represent both the actual state of the system
and the diagnostic made on this state, to represent decision rules for maintenance
interventions and to implement them effectively in units, and so on. Additional
difficulties come when there are different types of maintenance interventions, applying
on different groups of units.

The implementation in AltaRica 3.0 of the condition-diagnostic-decision pattern on
our example is performed into two steps.

The first step consists in augmenting the periodically-inspected-component
pattern so to represent maintenance interventions. To do so, it suffices to add



158 M. Batteux et al.

a phase MAINTENANCE to the component as well as two transitions: a transition
startMaintenance from a phase other than MAINTENANCE to the phase MAINTENANCE
and a transition completeMaintenance from the phase MAINTENANCE to the
phase OPERATION1. The transition completeMaintenance may be slightly different
depending on whether the component is as good as new after the maintenance or not.

The second step consists in describing the system as a whole, as shown Figure 19
and Figure 20.

Figure 19 AltaRica 3.0 code implementing the condition-diagnostic-decision pattern
(see online version for colours)

AltaRica 3.0 in 10 Modeling Patterns 27

1 domain Diagnostic {WORKING , DEGRADED , FAILED}
2

3 block Plant
4 block Units
5 PeriodicallyTestedUnit U1(tau=6, theta =2190 -3*tau ,
6 pi=4380 -tau);
7 PeriodicallyTestedUnit U2(tau=6, theta =2190 -2*tau ,
8 pi=4380 -tau);
9 PeriodicallyTestedUnit U3(tau=6, theta =2190 -1*tau ,

10 pi=4380 -tau);
11 end
12 block ActualStateCalculator
13 embeds main.Units.U1._actualState as s1;
14 embeds main.Units.U2._actualState as s2;
15 embeds main.Units.U3._actualState as s3;
16 Boolean failed(reset=false);
17 assertion
18 failed := #(s1==FAILED ,s2==FAILED ,s3== FAILED )>=2;
19 end
20 block DiagnosticCalculator
21 embeds main.Units.U1._observedState as o1;
22 embeds main.Units.U2._observedState as o2;
23 embeds main.Units.U3._observedState as o3;
24 Diagnostic diagnostic(reset=WORKING );
25 assertion
26 diagnostic := switch {
27 case #(o1==FAILED , o2==FAILED , o3== FAILED )>=2:
28 FAILED
29 case #(o1==FAILED , o2==FAILED , o3== FAILED )==1:
30 DEGRADED
31 default: WORKING
32 };
33 end
34 block Controller
35 ...
36 end
37 observer Boolean dangerousState =
38 ActualStateCalculator.failed and
39 not Controller.productionStopped;
40 observer Boolean safeState =
41 Controller.productionStopped;
42 observer Boolean maintenanceOnGoing =
43 Controller.maintenanceOnGoing;
44 end

Figure 19: AltaRica 3.0 code implementing the condition-diagnostic-decision pattern.



AltaRica 3.0 in ten modelling patterns 159

Figure 20 AltaRica 3.0 code implementing the controller (see online version for colours)

28 M. Batteux et al.

1 block Controller
2 embeds main.Units.U1 as U1;
3 embeds main.Units.U2 as U2;
4 embeds main.Units.U3 as U1;
5 embeds main.DiagnosticCalculator.diagnostic as
6 diagnostic;
7 Boolean productionStopped(init=false);
8 Boolean maintenanceOnGoing(init=false);
9 event stopProduction(delay=Dirac (0));

10 event startMaintenance(delay=Dirac(delta ));
11 event completeMaintenance(delay=Dirac(mu));
12 parameter Real delta = 720;
13 parameter Real mu = 48;
14 transition
15 stopProduction:
16 diagnostic == FAILED and not productionStopped ->
17 productionStopped := true;
18 startMaintenance:
19 !U1.startMaintenance
20 & !U2.startMaintenance
21 & !U3.startMaintenance
22 & diagnostic != WORKING and not maintenanceOnGoing ->
23 maintenanceOnGoing := true;
24 completeMaintenance:
25 !U1.completeMaintenance
26 & !U2.completeMaintenance
27 & !U3.completeMaintenance
28 & maintenanceOnGoing -> {
29 maintenanceOnGoing := false;
30 productionStopped := false;
31 }
32 end

Figure 20: AltaRica 3.0 code implementing the controller.
The block Plant declares four sub-blocks corresponding to the four modules of the
pattern. We have here the illustration of a very general principle: the ‘good’ architecture
for a model does not necessarily mimics the architecture of the system, at least its
physical architecture.

The block Units (line 4) gathers the declaration of individual units. Parameters tau
(duration of tests) and pi (interval between two tests) are redefined. Parameters theta’s
(date of the first test) are adjusted so to implement staggered tests.

The block ActualStateCalculator (line 12) calculates the actual state of the
plant from the actualState’s of the units. To do so, it aggregates these variables
by means of the clause embeds. Aggregation should be seen as a reference to an
element declared outside the aggregating block. This element is accessed by means
of an absolute or a relative path. In the code of the example, it is an absolute path:
the keyword main denotes the outer most block (or class) of the current hierarchy.
Therefore, main.Units.U1. actualState denotes the variable actualState of the
unit U1 of the block Units of the block Plant. It would have been possible to use
instead the relative path owner.Units.U1. actualState. The keyword owner denotes
the parent block.



160 M. Batteux et al.

The block DiagnosticCalculator (line 20) makes a diagnostic on the state of the
plant from the observedState’s of the units. It aggregates these variables.

The block Controller stops the production when the plant is diagnosed failed
(line 15). It schedules and executes maintenance interventions. To do so, it synchronises
its own events startMaintenance and completeMaintenance with those of units
(lines 18 and 24).

Observers dangerousState, safeState and maintenanceOnGoing make it
possible to count the number of times one of the states they describe has been
encountered, to get the sojourn times in these states and other indicators of interest.
This pattern concludes our presentation of AltaRica 3.0.

5 Conclusions

In this article, we gave a snapshot of the expressive power of the AltaRica 3.0
modelling language by showing how to encode ten very common modelling patterns in
probabilistic risk and safety analyses of complex technical systems. Modelling patterns
are not only a very efficient means to architect and to document models, they are
more fundamentally a way to reason about systems under study. We distinguished here
between behavioural patterns, that stand at component level, and architectural patterns,
that stand at model level. This taxonomy may be imperfect and will probably evolve in
the future. Behavioural patterns are rather well mastered as they are used in a variety
of contexts and with other modelling formalisms than AltaRica. On the contrary, the
study of architectural patterns is still in its infancy (or its adolescence). The authors are
deeply convinced that, together with the introduction of machine learning techniques to
obtain degradation profile of components, they are a game changer in probabilistic risk
and safety analyses.

An integrated modelling environment for AltaRica Wizard (AltaRica 3.0) is currently
under development as joint effort of the OpenAltaRica team at IRT-SystemX (Paris,
France) and the Norwegian University of Science and Technology. Industrial partners
(Airbus, Safran and Thales) support this project. A versatile set of assessment tools has
been developed, which includes:

• A step by step simulator making possible to play ‘what-if’ scenarios and to
validate models. This simulator implements abstract interpretation techniques so to
simulate faithfully stochastic and timed executions (Batteux et al., 2018).

• A compiler of AltaRica models into fault trees. This compiler relies on advanced
algorithmic techniques (Prosvirnova and Rauzy, 2015). Fault trees are then
assessed with XFTA (Rauzy, 2012), which is one of the most efficient available
calculation engines.

• A compiler of AltaRica models into Markov chains. This compiler produces
Markov chains that approximate the original model while staying of reasonable
sizes (Brameret et al., 2015). Markov chains are then assessed with Mark-XPR, as
very efficient calculation engine (Rauzy, 2004).

• A generator of critical sequences (still under development at the time we write
these lines).



AltaRica 3.0 in ten modelling patterns 161

• A stochastic simulator. Stochastic simulation is itself a versatile tool to assess
complex models, (see, e.g., Zio, 2013).

These tools make the AltaRica 3.0 technology versatile and efficient. They make it
possible cross-verification. They prefigure what will be the next generation of modelling
environments for the assessment of operational performance of complex technical
systems.

Tutorial material, courses for both primary and continuing education are also under
development.

In a word, the AltaRica 3.0 technology is now mature or close to be. Deploying
it in industry will indeed take time, but everything is ready for. With that respect,
training analysts is of course a key issue. New technologies are often deployed by new
generation of engineers. This will be probably the case for the model-based approach
in risk and safety analyses. Using high-level modelling languages such as AltaRica 3.0
requires some familiarity with information technology in general and programming in
particular. New generations of engineers have undoubtedly these skills.

Safety analyses are otfen thought as a cost. They are performed because regulation
bodies require them. As we are moving from a product-centered industry to a
service-oriented industry, their role is however changing: they are used not only to
assess whether systems are safe and available enough to be operated, but also to
establish contractual relations between providers and clients of services. In other words,
they are becoming an economical driver. With that respect, we can expect that the
industrial impact of new technologies such as AltaRica 3.0 goes much beyond traditional
safety analyses.

Acknowledgements

The authors would like to thank the reviewers of this article for their nice and useful
comments.

References
Abadi, M. and Cardelli, L. (1998) A Theory of Objects, Springer-Verlag, New York, USA.
Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S. and Franceschinis, G. (1994) Modelling

with Generalized Stochastic Petri Nets, Wiley Series in Parallel Computing, John Wiley and
Sons, New York, USA.

Andrews, J.D. and Moss, R.T. (2002) Reliability and Risk Assessment, 2nd ed., ASM
International, Materials Park, Ohio 44073-0002, USA.

Arnold, A. (1994) Finite Transition Systems, C.A.R Hoare. Prentice Hall, Upper Saddle River,
New Jersey, USA.

ARP 4761 (2004) Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment, SAE International.

Batteux, M., Prosvirnova, T. and Rauzy, A. (2015) System Structure Modeling Language (S2ML),
AltaRica Association, archive hal-01234903, version 1.



162 M. Batteux et al.

Batteux, M., Prosvirnova, T. and Rauzy, A. (2017) ‘AltaRica 3.0 assertions: the whys and the
wherefore’, Journal of Risk and Reliability, September, Vol. 231, No. 6, pp.691–700.

Batteux, M., Prosvirnova, T. and Rauzy, A. (2018) ‘Enhancement of the AltaRica 3.0 stepwise
simulator by introducing an abstract notion of time’, in Proceedings of European Safety
and Reliability Conference Safe Societies in a Changing World (ESREL 2018), Trondheim,
Norway, June.

Bouissou, M. and Bon, J-L. (2003) ‘A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic-driven Markov processes’, Reliability Engineering and
System Safety, Vol. 82, No. 2, pp.149–163.

Bouissou, M. and Houdebine, J-C. (2002) ‘Inconsistency detection in KB3 models’, in
Proceedings of European Safety and Reliability Conference, ESREL ‘2002, ISdF, Lyon,
France, March, pp.754–759.

Bouissou, M., Bouhadana, H., Bannelier, M. and Villatte, N. (1991) ‘Knowledge modelling and
reliability processing: presentation of the FIGARO language and of associated tools’, in
Lindeberg, J.F. (Ed.): Proceedings of SAFECOMP ‘91 – IFAC International Conference on
Safety of Computer Control Systems, Pergamon Press, Trondheim, Norway, pp.69–75.

Bouissou, M., Humbert, S., Muffat, S. and Villatte, N. (2002) ‘KB3 tool: feedback on knowledge
bases’, in Proceedings of European Safety and Reliability Conference, ESREL ‘2002, Lyon,
France, ISdF, March, pp.114–119.

Brameret, P-A., Rauzy, A. and Roussel, J-M. (2015) ‘Automated generation of partial Markov
chain from high level descriptions’, Reliability Engineering and System Safety, July,
Vol. 139, pp.179–187.

Cacheux, P-J., Collas, S., Dutuit, Y., Folleau, C., Signoret, J-P. and Thomas, P. (2013)
‘Assessment of the expected number and frequency of failures of periodically tested
systems’, Reliability Engineering and System Safety, October, Vol. 118, No. C, pp.61–70.

Colbourn, C.J. (1987) The Combinatorics of Network Reliability, Oxford University Press,
New York.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001) Introduction to Algorithms, 2nd
ed., The MIT Press, Cambridge, MA, USA.

David, P., Idasiak, V. and Kratz, F. (2010) ‘Reliability study of complex physical systems using
sysml.’, Reliability Engineering and System Safety, Vol. 95, No. 4, pp.431–450.

Dugan, J.B., Bavuso, S.J. and Boyd, M.A. (1992) ‘Dynamic fault-tree models for fault-tolerant
computer systems’, IEEE Transactions on Reliability, September, Vol. 41, No. 3,
pp.363–377.

Epstein, S. and Rauzy, A. (2005) ‘Can we trust PRA?’, Reliability Engineering and System
Safety, Vol. 88, No. 3, pp.195–205.

Esary, J.D. and Ziehms, H. (1975) ‘Reliability analysis of phased missions’, in Barlow, R.E.,
Fussel, J.B. and Singpurwalla, N.D. (Eds.): Reliability and Fault Tree Analysis: Theoretical
and Applied Aspects of System Reliability and Safety Assessment, pp.213–236, SIAM Press,
Philadelphia, PA, USA.

Friedenthal, S., Moore, A. and Steiner, R. (2011) A Practical Guide to SysML: the Systems
Modeling Language, The MK/OMG Press, Morgan Kaufmann, San Francisco, CA 94104,
USA.

Fritzson, P. (2015) Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: a
Cyber-Physical Approach, Wiley-IEEE Press, Hoboken, New Jersey 07030-5774, USA.

Fuhrmann, H.A.L. (2011) On the Pragmatics of Graphical Modeling, Kiel Computer Science
Series, Book on Demand, Norderstedt, Germany.



AltaRica 3.0 in ten modelling patterns 163

Güdemann, M. and Ortmeier, F. (2010) ‘A framework for qualitative and quantitative
model-based safety analysis’, in Proceedings of the IEEE 12th High Assurance System
Engineering Symposium (HASE 2010), IEEE, San Jose, CA, USA, pp.132–141.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994) Design Patterns – Elements
of Reusable Object-Oriented Software, Addison-Wesley Professional Computing Series,
Addison-Wesley, Boston, MA 02116, USA, October.

Halbwachs, N., Caspi, P., Raymond, P. and Pilaud, D. (1991) ‘The synchronous dataflow
programming language lustre’, Proceedings of the IEEE, Vol. 79, No. 9, pp.1305–1320.

International iec standard iec61508 (2010) International iec standard iec61508 – functional safety
of electrical/electronic/programmable safety-related systems (e/e/pe, or e/e/pes), Standard,
International Electrotechnical Commission, Geneva, Switzerland, April.

ISO 26262 (2012) ISO 26262:2011(en): Road Vehicles – Functional Safety, International
Standardization Organization, Geneva, Switzerland.

ISO/TR 12489 (2013) ISO/TR 12489:2013 Petroleum, Petrochemical and Natural Gas Industries
– Reliability Modelling and Calculation of Safety Systems, November, International
Organization for Standardization, Geneva, Switzerland.

Kehren, C., Seguin, C., Bieber, P., Castel, C., Bougnol, C., Heckmann, J-P. and Metge, S. (2004)
‘Architecture patterns for safe design’, in Electronic Proceedings of 1st Complex and Safe
Systems Engineering Conference (CS2E 2004), AAAF, Arcachon, France.

Klee, H. and Allen, R. (2011) Simulation of Dynamic Systems with MATLAB and Simulink,
CRC Press, Boca Raton, FL 33431, USA, February.

Kloul, L. and Rauzy, A. (2017) ‘Production trees: a new modeling methodology for production
availability analyses’, Reliability Engineering and System Safety, November, Vol. 167,
pp.561–571.

Krob, D. (2017) ‘CESAM: CESAMES systems architecting method: a pocket guide’, CESAMES
[online]http://www.cesames.net (accessed January 2017).

Kumamoto, H. and Henley, E.J. (1996) Probabilistic Risk Assessment and Management for
Engineers and Scientists, IEEE Press, Piscataway, New Jersey, USA.

Kwiatkowska, M., Norman, G. and Parker, D. (2011) ‘Prism 4.0: verification of probabilistic
real-time systems’, in Proceedings 23rd International Conference on Computer Aided
Verification (CAV ‘11), Vol. 6806 of LNCS, Springer, New York, USA, pp.585–591.

Lisnianski, A. and Levitin, G. (2003) Multi-State System Reliability, Quality, Reliability and
Engineering Statistics, World Scientific, London, England.

Madre, J-C., Coudert, O., Fräıssé, H. and Bouissou, M. (1994) ‘Application of a new logically
complete ATMS to digraph and network-connectivity analysis’, in Proceedings of the
Annual Reliability and Maintainability Symposium, ARMS ‘94, IEEE, Annaheim, California,
pp.118–123.

Maier, M.W. (2009) The Art of Systems Architecting, CRC Press, Boca Raton, FL 33431, USA,
ISBN: 978-1420079135.

Malinowski, G. (2009) ‘Many-valued logic and its philosophy’, in Gabbay, D.M. and Woods, J.
(Eds.): Handbook of the History of Logic, The Many Valued and Non-monotonic Turn in
Logic, Vol. 8, pp.13–94, Elsevier, Oxford, UK.

Mauborgne, P., Deniaud, S., Levrat, E., Bonjour, E., Micaëlli, J-P. and Loise, D. (2016)
‘Operational and system hazard analysis in a safe systems requirement engineering process
– application to automotive industry’, Safety Science, August, Vol. 87, pp.256–268.

Mhenni, F., Choley, J-Y., Nguyen, N. and Frazza, C. (2016) ‘Flight control system modeling with
sysml to support validation, qualification and certification’, IFAC-PapersOnLine, Vol. 49,
No. 3, pp.453–458.



164 M. Batteux et al.

Mosleh, A., Rasmuson, D.M. and Marshall, F.M. (1998) Guidelines on Modeling Common-cause
Failures in pra, Technical Report NUREG/CR-5485, US Nuclear Regulatory Commission.

Natvig, B. (2010) Multistate Systems Reliability Theory with Applications, Wiley, Hoboken,
New Jersey, USA.

Noble, J., Taivalsaari, A. and Moore, I. (1999) Prototype-Based Programming: Concepts,
Languages and Applications, Springer-Verlag, Berlin and Heidelberg, Germany.

Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., Grätz, U. and
Liend, R. (2011) ‘An approach to optimization of fault tolerant architectures using hip-hops’,
Journal of Engineering Failure Analysis, March, Vol. 18, No. 2, pp.590–608.

Point, G. and Rauzy, A. (1999) ‘AltaRica: constraint automata as a description language’, Journal
Européen des Systèmes Automatisés, Vol. 33, Nos. 8–9, pp.1033–1052.

Prosvirnova, T. and Rauzy, A. (2015) ‘Automated generation of minimal cutsets from AltaRica
3.0 models’, International Journal of Critical Computer-Based Systems, Vol. 6, No. 1,
pp.50–79.

Prosvirnova, T., Batteux, M., Brameret, P-A., Cherfi, A., Friedlhuber, T., Roussel, J-M. and
Rauzy, A. (2013) ‘The AltaRica 3.0 project for model-based safety assessment’, in
Proceedings of 4th IFAC Workshop on Dependable Control of Discrete Systems, DCDS
‘2013, International Federation of Automatic Control, York, Great Britain, September,
pp.127–132.

Rasmussen, N.C. (1975) Reactor Safety Study, an Assessment of Accident Risks in US
Commercial Nuclear Power Plants, Technical Report WASH 1400, NUREG-75/014, US
Nuclear Regulatory Commission, Rockville, MD, USA, October.

Rausand, M. and Høyland, A. (2004) System Reliability Theory: Models, Statistical Methods,
and Applications, 2nd ed., Wiley-Blackwell, Hoboken, New Jersey, USA, January 2004.

Rauzy, A. and Yang, L. (2018) ‘Finite degradation structures’, Journal of Applied Logic, article
submitted.

Rauzy, A. (2003) ‘A new methodology to handle Boolean models with loops’, IEEE Transactions
on Reliability, Vol. 52, No. 1, pp.96–105.

Rauzy, A. (2004) ‘An experimental study on six algorithms to compute transient solutions of
large Markov systems’, Reliability Engineering and System Safety, October, Vol. 86, No. 1,
pp.105–115.

Rauzy, A. (2008) ‘Guarded transition systems: a new states/events formalism for reliability
studies’, Journal of Risk and Reliability, Vol. 222, No. 4, pp.495–505.

Rauzy, A. (2012) ‘Anatomy of an efficient fault tree assessment engine’, in Virolainen, R. (Ed.):
Proceedings of International Joint Conference PSAM ‘11/ESREL ‘12, Helsinki, Finland,
June.

Rauzy, A. (2015) ‘Towards a sound semantics for dynamic fault trees’, Reliability Engineering
and System Safety, October, Vol. 142, pp.184–191.

Shier, D.R. (1991) Network Reliability and Algebraic Structures, Oxford Science Publications,
Oxford, England.

Signoret, J-P., Dutuit, Y., Cacheux, J-P., Folleau, C., Collas, S. and Thomas, P. (2013) ‘Make
your petri nets understandable: Reliability block diagrams driven Petri nets’, Reliability
Engineering and System Safety, Vol. 113, pp.61–75.

Ziehms, H. (1974) Reliability Analysis of Phased Missions, PhD thesis, Naval Postgraduate
School.

Vaurio, J.K. (2001) ‘Making systems with mutually exclusive events analyzable by standard fault
tree analysis tools’, Reliability Engineering and System Safety, Vol. 74, No. 1, pp.75–80.



AltaRica 3.0 in ten modelling patterns 165

Yakymets, N., Julho, Y.M. and Lanusse, A. (2014) ‘Sophia framework for model-based safety
analysis’, in Actes du congrès Lambda-Mu 19 (actes électroniques), Institut pour la Mâıtrise
des Risques, Dijon, France, October.

Zhang, Y., Barros, A. and Rauzy ,A. (2018) ‘Finite degradation structures’, Journal of Risk and
Reliability, article submitted.

Zio, E. (2013) The Monte Carlo Simulation Method for System Reliability and Risk Analysis,
Springer Series in Reliability Engineering, Springer, London, England.

Note

1 This equation echoes the title of the famous book Data Structures + Algorithms = Programs.


