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Abstract: Dymanic software updating (DSU) consists in updating running 
programs on-the-fly without any downtime that leads to systems unavailability. 
The use of DSU in critical applications raises several issues related to update 
correctness. Indeed, an erroneous dynamic update may introduce safety 
vulnerabilities and security breaches. In this perspective, the use of formal 
methods has gained a large interest since they respond to the high need of rigor 
required by such applications. Several frameworks were developed to first 
express update correctness which is based on several criteria. Then, the 
proposed formalisms are used to specify DSU systems, express correctness 
criteria and establish them. In this paper, we present a review of researches on 
the application of formal methods to DSU systems. We give a classification of 
systems according to the paradigms of programming languages and then we 
explain the correctness criteria and categorise the articles regarding the 
approaches of formalisation to establish the correctness. This information is 
useful to help ongoing researches in having an overview on the application of 
formal methods in DSU. 
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1 Introduction 

1.1 Context and motivations 

In order to add features or fix bugs in programs, dynamic software updating (DSU) 
systems allow code to be patched on-the-fly without requiring downtime. This is an 
important feature in critical systems that must run continuously or that can suffer attacks 
during their life time and must be upgraded. DSU is also referred as on-the-fly program 
modification, online version change, hot-swapping, or dynamic software maintenance 
(Seifzadeh et al., 2013). 
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Updating software at runtime is a challenging activity: when we think about critical 
systems, we are able to identify objects such as smart-phones, modern cars and personal 
electronic documents and application areas such as air traffic control, banking or 
healthcare. We are aware that in this kind of applications, any discontinuity of service to 
perform a classical shut down, update and restart leads to considerable losses. Besides, 
this kind of systems needs to be managed from a safety and security point of view, 
keeping their software up to date. For example, DYMOS (Lee, 1983) was implemented in 
banking system and EmbedDSU (Noubissi et al., 2011) is a system developed to support 
DSU for Java Card applications. Challenges raised by DSU are categorised into the 
following aspects: 

• Code update: the essential functionality of any dynamic updating system is the 
ability to access new versions of program methods and classes. The challenges 
related to this aspect are to define techniques to identify updated parts of the code 
and techniques to allow the system to access the new versions of functions and 
classes. 

• Data update: the second task in developing a DSU system is to transfer the state of 
the old program in order to make it compatible with the new version. A program 
state is defined, according to the style of programming, by a set of variables, stacks, 
objects in the heap or tables in a data base. This aspect of DSU requires the 
developer to write code that migrate the data structures to the new version. This code 
consists in state transfer functions (STFs). The challenge consists in defining 
techniques to allow the developer to write or infer STFs and define semantics for 
their application on running programs. 

• Update timing: the timing at which the update can take place is an important 
decision when designing a solution for DSU. The greatest challenge of update timing 
is to establish a trade-off between applying updates quickly and consistently. 
Techniques related to this aspect are designed to detect and to calculate points where 
the update can be updated without violating the system safety. Such points are called 
safe update points (SUP) or quiescent states. This aspect requires also, in some cases, 
to define mechanisms to bring the system to such points. 

• Correctness: the considerable contribution of DSU systems in term of high 
availability may be mitigated by errors introduced by the application of DSU. A 
challenging task is how to ensure that a system after being updated will behave as 
expected and that DSU systems will not bring any inconsistencies or system crash. 

Among the challenging aspects of DSU, the correctness represents a transverse question. 
Indeed, in order to make sure a system is correctly updated, it is important to ensure that 
we obtain the expected semantics of the program, that STFs are correctly applied and that 
selected update points guarantee the safety of the system. 

For critical systems, DSU correctness is a major concern. Indeed, erroneous updates 
lead systems to safety vulnerabilities and security breaches: an update may behave in an 
unexpected way and violates security invariants. Besides, malicious attempts to upgrade a 
running part of a system may have disastrous consequences. In this perspective, the use 
of formal methods is a means to ensure DSU correctness since they offer the rigor 
required by critical applications and represents an answer to several concerns related to 
DSU correctness. Besides, critical systems and in particular security-based systems must 
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pass certification procedures. The common criteria for information technology security 
evaluation (Common Criteria, 2016) are an international standard for the security of 
software and hardware products established in 1999. There are seven evaluation 
assurance levels (EALs) defined in common criteria, where EAL 7 is the strongest. They 
define the degree of rigor and depth that have been applied to assure the claimed security 
properties. Assessment at the two highest levels, EAL 6 and 7, requires formal methods 
to some extent, and gives not only the assurance that the security functions are 
implemented, but also that these functions are correct with respect to the security policies 
defined in the security target of the product. The use of formal methods in DSU offers 
means to specify the systems, the changes and criteria to ensure correctness with the rigor 
required by critical applications, security-based systems and high certification levels. 

1.2 Focus and contribution 

DSU systems are developed for a large variety of systems. They range from operating 
systems (Baumann et al., 2005; Arnold and Frans, 2009) to automation systems (Wahler 
and Oriol, 2014), networking (Hjálmtýsson and Gray, 1998), embedded systems 
(Noubissi et al., 2011) and service oriented applications (Chen and Huang, 2009). The 
establishment of the formal correctness in such diverse applications leads to the definition 
of several notions of correctness based on different criteria and related to the different 
aspects of DSU and to the use of various formalisms to specify DSU systems and 
establish correctness. 

Researches in terms of formalisation in DSU are more recent than researches in 
developing DSU techniques based on evaluation metrics and tests. But although quite 
recent, many researches were done and several ideas emerged, making the crossing of 
formal methods and DSU a promising research area. The emergence of formalisation of 
DSU systems in the rich and diverse tapestry of software formalisation is reflected by the 
increasing number of papers about this topic. The aim of this paper is to present a 
comprehensive review of the literature on the use of formal methods to establish DSU 
correctness. Surveys related to the techniques for code and data update, update timing, 
comparative studies related to DSU techniques, testing and evaluation metrics are out of 
the scope of this paper. These concerns are discussed especially in Seifzadeh et al. 
(2013), Miedes and Muñoz-Escoi (2012b) and de Pina (2016). As far as we know, this 
survey is the first related to the application of formal methods on DSU systems. The 
contribution of our paper is threefold: 

• We present DSU systems from diver’s application area classified on the base of the 
programming style. The aim of this part is to provide a representative overview 
about DSU which forms a required background to address details related to 
correctness criteria. 

• We give a comprehensive presentation of correctness criteria and propose to classify 
research papers in a way that gives a clear reading of the link between correctness 
criteria, style of programming and application areas. 

• We propose a classification of the research papers according to the formalism used to 
specify DSU and correctness criteria. We outline how correctness is established by 
formal techniques. This contribution is meant to help ongoing researches in 
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understanding existing works. We provide a practical representation in term of 
deciding the suitable formalisms and techniques to establish correctness criteria. 

Figure 1 illustrates the elements of our contribution which ends by discussing trends in 
the application of formal methods in DSU systems and highlighting some interesting 
research directions. 

1.3 Outline 

This paper is organised as follows: Section 2 gives an overview of different DSU systems 
trough a classification according to paradigms of programming languages. Section 3 
surveys properties that ensure DSU correctness. In Section 4, we present paradigms of 
formalisms used to specify and establish DSU correctness. In Section 5, we discuss the 
state of the art and point out some directions of future research. We present related works 
in Section 6 and then conclude in Section 7. 

Figure 1 Elements of the contribution (see online version for colours) 

 

2 Dynamic software updating systems 

In this section, we give an overview about DSU systems classified according to the main 
paradigms of programming languages. For every presented system, its application area is 
outlined if provided in the research paper. The considered classification allows first to 
present in the same subsection technical choices to address DSU challenges in systems 
that belong to the same paradigm and thus raises similar concerns. Secondly, each 
programming language has its own mechanisms for running code, accessing, 
manipulating and protecting data. These concerns, combined with DSU techniques for 
code update, data update and update timing, are crucial to define DSU correctness criteria 
and formalisation issues which will be detailed in Section 3 and Section 4. 

2.1 Sequential programming 

Sequential programming languages have been considered for the implementation of DSU 
systems in Arnold and Frans (2009), Neamtiu et al. (2006), Hicks (2001), Gupta and 
Jalote (1993), Holmbacka et al. (2013) and Lv et al. (2012). 
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2.1.1 DSU for server applications 
In Neamtiu et al. (2006), the authors presented Ginseng, a DSU system for C server 
applications. The system is composed of three parts: a compiler, a patch generator and a 
runtime system. First, the compiler generates an updateable program from an initial 
version of the program by mainly adding calls to mediator functions to access updatable 
structures. The patch generator computes the difference between the updatable version 
and the new desired version. The patch is then passed to the runtime system with 
information about the program state to perform the dynamic update. This system is based 
on function indirection for code update. Ginseng does not support changes to active 
methods on stack, so SUPs are identified when no changed methods are running. Data 
update is performed using STF generated by the patch generator. These functions are 
applied when the updated data is first invoked using the previously inserted mediator 
calls. 

2.1.2 DSU for embedded systems 
In Holmbacka et al. (2013), the authors developed a DSU system for C-based embedded 
systems. Their framework is based on FreeRTOS (FreeRTOS, 2016). The system relies 
on a separation of FreeRTOS tasks in the form of executable and linkable format (ELF) 
and a dynamic linking of ELF binaries for code update. This provides the ability to insert 
or to suppress binary files during execution. The programmer uses annotations to express 
updates and chooses update points. A state is safe to perform an update if no external 
events such as inter task communication or open file descriptors may disturb the state of 
the task. Due to the resources limits in embedded systems, the state transfer is performed 
by storing temporally the context in a special memory segment. This allows the new 
version to continue with the same addresses. When the new code is available, the state is 
transferred to its permanent emplacement. 

In the same context, the authors in Lv et al. (2012) presented DSSUS: dynamic 
satellite software updating system for on-board softwares that support Vxworks systems 
(Vxworks, 2016). It consists on dynamically loading/unloading modules on the basis of 
several analysis. An ELF analysis records the size of code and data segment, the name 
and size of global variables and static variables. This information is used by dependencies 
analysis in data and modules so that software is loaded and linked according to the 
dependency relation. In order to perform that update, the updater inspects if tasks (current 
task and tasks in calling stack) are in the module to be updated to detect a SUP to ensure 
update safety. 

2.1.3 DSU for operating systems 
The system Ksplice (Arnold and Frans, 2009) is developed to dynamically update the 
kernel of Linux operating system. To perform updates, Ksplice works in three phases: 
first, a patch is generated by comparing ELF files of old and new versions, then a 
replacement code in which addresses and symbols are resolved is generated. The system 
uses then binary rewriting to insert the changes into the running kernel. Ksplice uses 
function indirection to jump to the new version of a method by installing trampolines at 
update time. The system overwrites the first few instructions of the old version’s method  
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body with a jump instruction to the new method. Future calls to an updated method jump 
through this trampoline to the latest version’s body. Data update is implemented with the 
use of the concept of shadow structures. It consists in extensions to the original structures 
that have the extra fields that do not fit in the original structure. The DSU system adds a 
pointer to a shadow structure to the end of every updatable structure in the initial version. 
When preparing each update, the DSU system rewrites the code that accesses the new 
fields to use the shadow instead. 

In Giuffrida and Tanenbaum (2013), the authors present PROTEOS, a new research 
operating system designed to safely and automatically support many classes of live 
updates. The main novelty of this system is its approach to detect safe states to perform 
updates: updates are installed only when particular constraints, defined by the 
programmer, are met by the global state of the system. This is done by defining state 
filters: they are generic Boolean expressions written in a C-like language and evaluated at 
runtime. The system allows update at process level instead of the separation of code and 
data. This approach allows stable update process and ensures that only one version at the 
time is logically visible to the rest of the system and allows to perform rollback in case of 
run-time errors. 

2.1.4 DSU for cloud applications 
In Qiang et al. (2016), the authors proposed a DSU system for cloud applications written 
in C called multi-version execution for updating of cloud (MUC). The system uses the 
multi version execution approach to handle the inconsistent issue. The approach is based 
on four parts: first, a static analysis is performed to produce update information: an 
update file indicating modifications and an inter process communications files containing 
the calls of the application. When an update is received, the system forks a new process 
of the old version. Then, a synchronisation step is used to ensure that the recently created 
process executes the same calls as the original process. After that, it is updated when it 
reaches an update point by two transformations: state transformation and data 
transformation. The two versions are synchronised again at system calls level so that they 
could be seen as one process. Finally, the system ensures that when the old version 
executes system calls related to interprocess communication, it will copy its parameters 
and outputs to the address space of the new process to guarantee the consistency of the 
application. 

2.2 Object oriented programming 

Several systems are proposed for DSU in object oriented programming (Hjálmtýsson and 
Gray, 1998; Noubissi et al., 2011; Orso et al., 2002; Malabarba et al., 2000; Subramanian 
et al., 2009). The most studied languages in this category are Java and C++. DSU systems 
for Java applications are classified into two categories: the first one concerns the  
system-based on the modification of the Java Virtual Machine to support DSU 
functionalities and the second category represents systems based on other techniques like 
proxy classes to implement DSU. Jvolve (Subramanian et al., 2009), DVM (Malabarba et 
al., 2000) and EmbedDSU (Noubissi et al., 2011) are systems of the first category. DUSC 
(Orso et al., 2002) and Rubah (de Pina et al., 2014) belongs to the second category. DSU 
systems for C++ are presented in Baumann et al. (2005) and Hjálmtýsson and Gray 
(1998). 
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2.2.1 DSU for Java with VM support 
Jvolve (Subramanian et al., 2009) is based on a virtual machine called Jikes RVM. It has 
a module for update preparation tool (UPT) which determines, from the old and the new 
version of an application, what are the modified, deleted and added classes. Instances are 
updated using functions written by the programmer. New classes are loaded using the 
standard Java class loader. The virtual machine checks if there is no updated method in 
the stack to perform the update. EmbedDSU (Noubissi et al., 2011) is very similar to 
Jvolve. It is a system developed to implement DSU functionalities in Java Card  
(Java Card, 2016). It is based on two parts: first, in the off-card part, a module called 
DIFF generator computes the syntactic changes between the old and the new version of 
the application and generates a patch. This patch is then sent on the card to perform the 
second part of the system (on-card part) by modules implemented by extending the  
Java Card virtual machine. Both Jvolve and EmbedDSU implement a mechanism to 
detect SUPs. These points restrict the update so that no stack contains restricted methods. 
A restricted method is an updated method or a method using instances from updated 
classes. The main difference between Jvolve and EmbedDSU is that EmbedDSU requires 
that no active method is on the stack to define safe points while Jvolve defines several 
kinds of restricted methods. Principally, it distinguishes between methods to update and 
methods that refer to updated classes. The system performs a return barrier on the first 
category, i.e., it blocks all calls to this kind of restricted methods. It executes an on stack 
replacement for the second category. This technique consists in a recompilation of 
methods while they are being executed. 

2.2.2 DSU for Java without VM support 
DUSC (Orso et al., 2002) is a DSU system for Java applications based on proxy classes. 
This technique rewrites first the application to make it updatable and then performs 
dynamic class replacement during execution. The original class is rewritten to four 
classes. The first is an implementation class that contains the implementation of each 
version of the updated class. The second and the third classes are the wrapper class and 
the interface class. The wrapper is used to provide the same interface to any client class 
of the updated class. Each implementation class refers to other updatable classes through 
their wrapper. The interface class is an abstract class that all implementation class extend. 
The wrapper class uses interface classes to refer to each implementation class indirectly. 
This way, all calls to a class are redirected to the current implementation. The fourth class 
is called state class. It encodes the state of an instance of the implementation class, and is 
used to transfer the state of existing instances to the new version when there is no active 
method in the stack. 

In de Pina et al. (2014), the authors present Rubah: a DSU system for Java. It requires 
no changes to the JVM and works by bytecode rewriting for code update using an 
existing rewriting tool. This enhances the portability of the system. The main novelty of 
Rubah is related to data update. The authors propose two new algorithms to deal with 
state transfer: a parallel state transformation algorithm and a lazy state transformation 
algorithm. The first algorithm acts eagerly and uses the basic idea of starting from the 
root references, and following each object reference transitively until all the program 
state is visited and prepared to be transformed. The proposed algorithm performs using 
multiple threads and this speed up the process. The second algorithm takes place while 
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the program is running. The goal is to delay the transformation of each object to its first 
use by the new version of the application. This solution uses proxies on objects in order 
to inform the update process when the program uses an object (reads or writes in its 
fields). The system considers that update points are chosen and inserted by the 
programmer according to the semantics of the application. 

2.2.3 DSU for C++ classes 
In Hjálmtýsson and Gray (1998), the authors presented a system for DSU in connection 
management services in telecommunication systems. The system is based on dynamic 
classes to allow new functionalities to be introduced into a running C++ application. The 
solution is implemented using proxy classes. Each dynamic class is written as two 
separate parts: an abstract interface class and one or more implementation classes that 
inherit from the interface. An implementation class corresponds to each version of the 
class. Indirect method resolution is used to call the correct implementation using map that 
associates the class name with the current implementation version. The method to update 
objects is to consider that new objects are created with the new version and existing 
objects continue with their current versions. Once the existing objects finish their tasks 
they are destroyed. Specific methods allow an object to determine if its version is the 
most recent version and provide to the programmer the possibility to migrate explicitly 
objects. 

2.3 Functional programming 

Several works were published on dynamically update functional programs (Buisson and 
Dagnat, 2010; Gilmore et al., 1997; Duggan, 2005). 

2.3.1 ReCaml 
The system ReCaml (Buisson and Dagnat, 2010) represents a new functional 
programming language designed for manipulating execution states in a safe manner. The 
system is built on top of a simply typed lambda-calculus and is considered as an 
extension to the Caml byte code interpreter. 

ReCaml allows active functions updating. The programmer annotates the code with 
SUP. When an update is detected, the execution is restored to the closest annotation to 
apply the update. The programmer provides functions to update program states 
represented on the basis of the concept of continuations: an abstract representation of 
program states that allows a prospective view of a program execution from a given point. 
The manipulation of continuation is based on the definition of a new constructor for the 
language. The constructor is a pattern matching operator that implements several policies 
for update such as waiting the end of old versions of methods and version coexistence. 

2.3.2 DynamicML 
In Gilmore et al. (1997), the authors presented DynamicML, a system to support 
Dynamic update for ML language. It extends the standard ML to support online update. 
DynamicML is a statically typed language. To support the compiling time type checking, 
DynamicML limits the changes allowed in a type. A type S1 can be replaced by a type S2 
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only if S2 is a subtype of S1. The system allows the update of ML modules called 
fonctors. The new version of a module is checked to have the same signature as the old 
version and updates are restricted to abstract data types. DynamicML relies on SUP 
searching and installation functions provided by the programmer to perform updates. The 
presence of installation functions is checked at compilation time. The system uses a 
rollback mechanism in the case of exceptions; the system is brought back to its initial 
state. DynamicML poses restrictions on the expressivity of updates but allows to ensure 
safety with concepts inherited from functional programming such as strong static typing. 

2.4 Multi-threaded programming 

Several studies explored the application of DSU techniques on multi-threaded programs 
(we cite, Chen et al., 2007; Makris, 2009; Makris and Ryu, 2007; Neamtiu and Hicks, 
2009). 

2.4.1 POLUS 
POLUS (Chen et al., 2007) implements DSU for multi-thread C programs. Data update 
relies on a patch generation module to perform differences between the old and the new 
version of a program. The patch contains code that maintains the coherence among the 
threads. POLUS does not wait for SUP to perform updates; it uses an immediate update 
based on the coexistence of old and new versions of code. Synchronisation functions are 
used to maintain consistency among the different versions: when a dynamic update is 
being applied, the patch injector write-protects both the old and the new versions of an 
instance. This is performed by associating a signal handler to catch each write attempt to 
either version of the instance. The signal handler invokes the corresponding state 
synchronisation functions to transfer the modified state from one version to the other. 

2.4.2 UpStare 
The system UpStare (Makris, 2009) is a DSU system developed to support DSU in  
C multi-threaded programs. It is composed of several modules: a compiler, a patch 
generator and an update module. For code update, UpStare instruments the code while 
compiling an application by inserting information needed for the update and uses 
indirections in function calls. For data update, UpStare has an improved state 
transformation technique that is able to update active functions at run-time. The 
technique is called stack reconstruction meaning extracting the stack and reconstructing it 
to be coherent with the new version. To our knowledge, it is the unique system to allow 
stack reconstruction. To perform an update after detecting an update point, UpStare uses 
a thread coordinator to apply an atomic update to all the threads concerned by the update 
without causing incoherence of the system. 

2.5 Component programming 

Component programming was the subject of several DSU systems, like Noubissi et al. 
(2010b), Solarski (2004), Panzica La Manna (2011), Chen and Huang (2009), Wahler and 
Oriol (2014), Felser et al. (2007) and Liu and Tong (2011). 
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2.5.1 DSU for FASA framework 
A system for dynamic software update for automation systems is presented in Wahler and 
Oriol (2014). The authors described a solution based on future automation system 
architecture (FASA), a component-based software architecture and runtime platform for 
real-time applications. First, the code of the new components needs to be loaded into 
memory. The system configuration is then prepared by creating a new system 
configuration, a clone of the active one. The proposed mechanisms consider the case of 
state transfers that requires a significant amount of time. The proposed solution allows 
FASA to distribute the state transfer between two components across multiple cycles. 
This is implemented using a synchronisation mechanism that keeps track of state changes 
and retransmits changed parts of the state. The system implements also a switchover 
mechanism to ensure that all updates on all involved controllers become active at the 
same time. Safety is ensured by a rollback mechanism to restore original configuration if 
new components do not behave as expected. 

2.5.2 DSU for OSGi 
In Noubissi et al. (2010b), the authors proposed an approach for dynamic update in OSGI 
inspired by their works on EmbedDSU (Noubissi, 2011; Noubissi et al., 2011). OSGi is a 
platform to build Java applications from a number of modular, reusable and collaborative 
components (called bundles), that can be dynamically reloaded (Miedes and  
Muñoz-Escoi, 2012a). The proposition (Noubissi et al., 2010b) is based on the analysis of 
bundles to prepare the update by comparing files and classes, generating a DIFF file 
(difference between two versions of an application) and by including STFs. The update 
module is structured as bundles. There is mainly two parts: the first is encapsulated in an 
OSGi bundle and update services and the second is in the virtual machine and offers 
functions of introspection, SUP detection and rollback mechanism. The state transfer is 
done in two parts: architecture adaptation and interface adaptation. In Chen and Huang 
(2009), the authors present two techniques. In the first one, the new service that has the 
same name with the old one is required to register in the framework before update. The 
new version is registered with a higher property so that it will be automatically chosen by 
the client. A SUP is then indicated in order to perform state transfers correctly. The 
second technique is based on the combination of runtime source compilation, class 
reloading and the proxy design pattern. Once the changes in implementation classes are 
detected, source code needs to be recompiled at runtime. The basic idea is to load the 
dynamic service class using a dedicated class loader. A proxy design pattern is used to 
replace the old service instances. A proxy class operates as a dynamic service class’s 
access interface. It allows to invoke indirectly the dynamic service class by the service 
objects so that when the dynamic service class reloads, the service objects continues to 
use the same proxy instance to access new classes. 

2.5.3 DSU for Distributed embedded systems 
In Felser et al. (2007), the authors described an update infrastructure that allows dynamic 
reprogramming of the network nodes based on the binary code of the application. The 
update preparations are executed by a dedicated node called remote or manager node. 
Then, the system constructs a fine-grained modularisation of the application to detect 
dependencies between its elements. When the administrator changes a function, the 
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system identifies which functions and data in the dependency graph are affected and 
where these parts are installed in the network. This information represents the basis of 
semi-automatic policies that are used to determine if the update operation can be 
performed. The system creates and manages a memory image model that represents the 
usage of the memory in the device. This memory model is initialised with the initial state 
of the node and used for keeping track of the currently installed software layout. Based 
on this information, the system determines a location where to put modified code on the 
node. 

2.5.4 DSU for internet of things 
In Liu and Tong (2011), the authors present a framework for DSU to ensure high 
availability in sensor data transmission and cooperation service for internet of things. The 
authors suppose periodical execution of upgrades and define an update management 
framework to manage sensor software according to work context containing work 
environments and state. They set a generic update service pack between update 
coordinator and sensors and propose three algorithms for update service pack for 
improving service pack accessibility according to several scenarios given by the number 
of sinks and sensors implied in the update. The framework uses replication of the original 
version of a program which is held by an update coordinator. The replica becomes invalid 
after the update is performed. Each sensor holds a table containing information about 
updates times. This information is used in routing and synchronisation and ensures 
consistency of the system. 

2.6 Discussion 

We classified in this section DSU systems according to paradigms of programming 
languages through the description of representative systems from different application 
areas. In literature, other classifications exist (Seifzadeh et al., 2013; Miedes and  
Muñoz-Escoi, 2012b; Giuffrida and Tanenbaum, 2010). The classification according to 
paradigms of programming languages is mainly motivated by the objective of our paper 
which is to present a comprehensive survey on the use of formal methods to establish 
DSU correctness. Indeed, it is established that the style of programming language is tiled 
with the definition of correctness criteria. In Gupta (1994), the author studied three 
programming paradigms (sequential, object oriented and distributed) and showed how the 
definition of correctness criteria changes with the notions introduced by each paradigm. 
In Murarka (2010), the author presented correctness criteria related principally to the 
definition of SUPs and data update. They established different definitions for correctness 
criteria according to the style of programming (sequential and multi-threaded). Detailed 
definitions of DSU correctness criteria are the subject of the following section. 

3 Correctness criteria for DSU 

Ideally, in order to ensure DSU correctness, one wants to establish that the behaviour of 
the application must be the same as the one that may be obtained by starting and running 
the application once the updates have been applied statically. In Gupta (1994), Gupta 
presented the first formal framework for DSU correctness. He studied several types of 
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programming languages: sequential, object oriented and distributed. The author proved 
the undecidability of the DSU validity. This means that given two versions P0 and P1 of 
a program, a STF F and a state S, there are no algorithms to establish if the DSU with 
these parameters is valid or not. Consequently, validity of an update is ensured by a set of 
conditions that can be summarised by the fact that a modified procedure in the program 
should be a functional enhancement of the old procedure with respect to the STF. A 
procedure pc1 is a functional enhancement of pc0 if the process is in the same state in 
both the following cases: procedure pc0 is executed in state S and after that the process is 
updated, or, the process is updated in state S and after that procedure pc1 is executed. 

For several authors (Murarka, 2010; Hayden et al., 2012; Zhang et al., 2012), these 
conditions are too restrictive. Several studies presented formalisms to model DSU 
systems and proposed other definitions of correctness. The next section presents more 
details about works to formally model, define and establish correctness for DSU systems. 
The application of formal methods in DSU leads generally to consider two aspects: the 
definition of correctness criteria and the approaches used for formalisation. In this 
section, we discuss correctness criteria for DSU. Formalisations techniques and 
paradigms will be presented in Section 4. Two categories of properties are outlined in 
research papers for DSU correctness. The first category regroups common properties that 
are shared by all updates such as type safety and no crash. The second category refers to 
specific properties related to the expression of the semantics of updated programs and 
requirements. 

3.1 Correctness based on common properties 

3.1.1 Reachability 
In Gupta (1994) and Gupta et al. (1996), the authors proposed a formal framework for 
DSU modelling and define condition for its validity. The framework is based on the 
notion of reachability. A process is defined as a code P0 and a state S changing with 
transition function. A state S is reachable if and only if the execution of P0 from an initial 
state leads to S in a time T. When updating, the behaviour of a process is changed from 
P0 to P1. This change is modelled with a mapping function (or a STF). A change from 
P0 to P1 at a time T is valid if after the change, the process leads to a reachable state of 
P1. This means that the process behaves as if it executed P1 from scratch. 

This validity property based on reachability suffers from the following drawback: it is 
both too permissive and too restrictive. It is permissive (de Pina, 2016) because the 
property allows a program to behave arbitrarily during a transition period after 
performing a DSU. However, the new program must eventually behave as if it was 
executed from the start. In Hayden (2012), the author exhibited an example that 
illustrated how this property could be restrictive: he considers an update to a server 
program that adds a limit to the maximum number of connected clients. Performing a 
DSU to install the new version on a server that already has more connections than the 
allowed limit raises a problem: allowing those clients to remain connected violates the 
validity because the clients may remain connected for an indefinite amount of time. On 
the other hand, terminating clients abruptly causes a loss in the program state which is not 
allowed in DSU. These limits are principally related to the fact that reachability is 
designed to target correctness in a general way. In research papers afterward, authors 
defined correctness criteria for targeted aspects of DSU. 
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3.1.2 Activeness safety 
This property is related to update timing. It characterises SUPs and quiescent states by 
ensuring that an update may be performed only if the functions [or components in 
Buisson et al. (2016)] that are impacted by the update are not running (active). This 
means that changed functions are not on the activation stack of a running program. This 
is ensured by analysing the applications based on introspection of the running 
environment to define SUPs (Noubissi et al., 2011; Lv et al., 2012; Hayden, 2012) or by 
static analysis that examines the call graph of the old version. 

Figure 2 An example of an updated code (see online version for colours) 

 

Let us consider the example on (Figure 2). It illustrates the old version and the new 
version of a program written in a c-like style. It represents a bill generation system. The 
system reads first information related to the code, the unit price and the number of items 
of a product. Then the functions tax1 and tax2 are called to calculate the taxes for the 
product before calculating the final price (price function) which is summed at the end. If 
the calculus performed by function tax1 is modified in the new version (line 15 of the 
new version), then activeness safety property is ensured if the update is performed when 
the function tax1 is not running. Activeness safety is a very popular property (Altekar  
et al., 2005; Arnold and Frans, 2009; Felser et al., 2007; Noubissi et al., 2011) for the 
identification of update points but it suffers from some limitations: multi threaded 
programs and function that may contain long running loops cause the system to delay 
update application for a considerable time. Besides, the authors in Subramanian et al. 
(2009) showed that in some cases, this restriction may cause errors when a not updated 
function calls an updated function. If the update occurs just at the beginning of the caller 
and the updated method signature is updated, an error occurs. 
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Research papers propose techniques such as loop extraction (Neamtiu et al., 2006) in 
order to deal with long running loops in updated methods. The body of the loop is 
extracted to its own function so that if an update changes the loop body, the extracted 
function will be restricted for the update, and thus will ensure activeness safety, but the 
update can happen after it returns. Other systems use return barrier technique to inform 
the system every time an updated method returns and thus speeds up reaching a safe 
point. Some research papers proposed techniques for stack replacement to update active 
code (Subramanian et al., 2009; Makris, 2009). The following correctness criteria are 
related to the case of systems that allow active code to be updated. 

3.1.3 Con-freeness 
In Stoyle et al. (2007), the authors defined correctness trough the notion of con-freeness. 
This property expresses that the remaining code to be executed at an update point does 
not make use of the format of an updated data. The framework distinguishes between 
concrete and abstract use of a data type. The uses of the format of the data is called 
concrete. It is abstract otherwise. For each update point and for all types that an update 
changes, the program does not use these types concretely after an update point. Update 
points are inferred by a static analysis. Expressions of type coersion are used to identify 
concrete and abstract uses of data types in a program. 

In the example on Figure 2, the function tax1 uses the format of the data tax(c) 
representing a tax on a product represented by its code (c). The notation tax(c).a 
expresses an access to the field a of the structure tax(c). If the programmer wants to 
update the format of the data tax(c).a (for example, add another field) con-freeness 
property is not satisfied at the line 6 because from this line, its format is used concretely. 
Con-freeness is verified at line 7, because the use of the data tax(c) from this line does 
not refer to its structure. 

Con-freeness is less restrictive than activeness safety since it allows functions to be 
updated while running but the limit of these criteria is that if update points are not 
frequent enough, an update may be delayed for a long time. 

3.1.4 Type safety 
Type safety, studied in Chen et al. (2007), Buisson and Dagnat (2010) and Zhang et al. 
(2012), means that functions of different versions can not refer to data of an inappropriate 
types. This property is highly desired in DSU systems since it represents the corner stone 
of several applications safety such as Java-based applications. 

In Zhang et al. (2012), the difference is noted with type safety in programming 
languages which means that a language is type safe if it prevents type errors. In DSU, if a 
function f is defined as f(Aa)… in an old program, and if the new version brings changes 
in the type A, then, after the update, when f is called, its argument must be of the new 
version of the type A. In the example on Figure 2, the type of the third argument in the 
function price is changed to float. In order to the updated code to be type safe, it must be 
ensured that every call to the function uses the right type of the argument. 
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3.1.5 Consistency 
The problem of consistency is related to errors that may be introduced by the coexistence 
of several versions of codes or data. In the literature, updating data is performed 
according to different models. Figure 3 illustrates three models for data update 
(Hjálmtýsson and Gray, 1998) in DSU. In the first model [part (a) on Figure 3], object 
creation is blocked until all existing objects of older versions have expired. This solution 
lacks the flexibility required by DSU systems. In the second model [part (b) on Figure 3], 
the solution is to transform eagerly all existing objects of the old version to objects of the 
new version. The third model [part (c) on Figure 3] considers that new objects are created 
with the new version, and existing objects continue with their current version. Other 
research papers consider an update model where the programmer has the possibility to 
select objects to be transferred to the new version and objects that can continue to execute 
with the old version (Murarka, 2010; Malabarba et al., 2000). 

Figure 3 Models for data update (see online version for colours) 

 

These models for data update require a careful definition of conditions to avoid the 
manipulation of the wrong version of data by the program and thus ensure consistency. In 
de Pina et al. (2014), the consistency is preserved through the definition of two conditions 
based on the notion of safe to access objects. These objects are either up to date or a 
proxies used by the garbage collector-like update algorithm. In Boyapati et al. (2003), the 
authors used the notion of modularity conditions to ensure consistency. These conditions 
define orders to the application of STFs with regard to the updated objects and links 
between classes and the bodies of STFs. 

Another aspect of consistency is related to code versions: in some cases, different 
functions needs to be managed together to avoid errors. For example in Rinderle et al. 
(2004), if the main loop of a program invokes an encode/decode function to encrypt send 
messages over a connection at the beginning of each iteration and again invokes it to 
decrypt receive-messages at the end of the iteration, updating of such function during the 
main execution can cause the program to encrypt a message with one algorithm and 
decrypt its result with another one. In the example on Figure 2, if the value of the tax on a 
product changes between the two calls on lines 6 and 7, this mean that we consider 
different information about the tax on the same product in a single price calculus. This 
problem is called version inconsistency problem. The consistency is ensured generally 
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with techniques such as function indirections (Stoyle, 2006), synchronisation (Neamtiu 
and Hicks, 2009) and the definition of transaction blocks (Neamtiu et al., 2008). 

3.1.6 No crash 
A crash occurs when a piece of software stops performing the activities it has been 
designed for. No crash property guarantees that any correct update must never cause 
target systems to crash during and after the update. Since system crash in DSU can occur 
for several reasons (de Pina, 2016) such as bad timing points, wrong expression of STF’s 
or misbehaviour in updated code, this property is stated, in several research papers, on the 
basis of other correctness criteria such as consistency, safe update timing. Some research 
papers express no crash property on the basis of patches verification (Noubissi, 2011) and 
system verification (Zhang et al., 2012). 

3.1.7 Deadlock free 
Deadlock occurs when a program can never proceed. Concurrent programs sometimes 
include instructions for blocking to eliminate data races or communication errors. 
Deadlock happens when two processes sharing the same resource prevent each other 
from accessing the resource. In the application of DSU in concurrent programs, 
programmers ensure that they do not insert blocking update calls (UCs) that can lead to 
deadlock. Figure 4 illustrates a deadlock scenario: the thread T2 owns a lock on the 
thread T1. An UC is inserted just after the lock. Due to this blocking UC, the unlock 
instruction will not be executed. The thread T1 will be locked at the wait instruction and 
will not reach the UC point. 

In Lounas et al. (2017b), the authors propose solutions to tackle deadlock situations 
by improving UCs to ensure that threads do not hold a lock while waiting for the update. 
This property is also guaranteed in Anderson and Rathke (2012) by using type analysis 
and in Murarka and Bellur (2008) by using analysis of parallel execution and inter 
procedural call graphs. 

Figure 4 A deadlock scenario (see online version for colours) 

 

3.1.8 Updatability 
This property is related to update timing. In order to define SUPs, systems rely 
principally on two major approaches. The first approach relies on techniques that perform 
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SUPs before the update. Update points are inserted in the program as annotations or as 
procedure calls. These points are inferred by a static analysis of the program. In the 
second approach when an update is detected, the introspection mechanisms are activated 
to detect if the application is in a quiescent state to launch the update. If not, DSU 
systems activate mechanisms that bring the application to SUPs. 

Updatability means that once an update request is made, old system must eventually 
reach an updatable state (Zhang et al., 2015). It is a temporal property which ensures that 
the application reaches update points or that the update mechanism brings the system to 
update points that satisfy properties defined by the user. 

3.2 Correctness based on specific properties 

We discuss in this subsection the use of specific properties for DSU correctness. This 
kind of properties, also called behavioural or semantical properties, requires writing 
formal specifications of the programs and the changes in the desired behaviour. 

In Charlton et al. (2011) and Lounas et al. (2015), the desired properties are expressed 
within the updated code using Hoare Logic (HL) style (Hoare, 1969) by writing 
preconditions, post-conditions and assertions of the desired behaviour within the code. 
The system computes proof obligations that are discharged by theorem proving. In 
Murarka (2010), the author proposed a system for DSU that allows writing user 
specifications within a patch. The user writes specifications according to concepts of 
tasks and activities and by choosing, for particular parts of a program, behaviours defined 
by the framework (offline, isolate, adapt and mutate). These behaviours control the way 
the update is applied. For example, choosing an offline behaviour means that all task 
instances started till a specified time t execute using the old program and all task 
instances started after the time t execute using the new program. The user chooses also 
the behaviour of the program by selecting updates on tasks and activities. The system 
analyses the patch and computes update points that guarantee safety conditions to apply 
the update. In Anderson (2013), the behavioural properties are expressed in a type system 
extended with effects. The effects allow to express the desired properties and keep track 
on the evolution of the system behaviour from the initial configuration to the desired 
specification by defining operations to evaluate the differences between effects of the 
initial version and the following versions. In Zhang et al. (2013), the authors presented a 
framework that allows the expression of behavioural properties of dynamic updating 
models. The behaviour of updated systems is expressed whether by using linear temporal 
logic formulas (LTL) or through algebraic sorts. These notions will be detailed in the 
following section. 

3.3 Discussion 

DSU mechanisms represent a response to the growing need of high availability, but one 
must ensure that these updates should not cause the running system to be shut down or 
performing erroneous behaviour. The system should verify DSU correctness criteria to 
rule out system crash, avoid deadlock situations and errors in updating semantics, data 
and timing which expose it to vulnerabilities. For example, several applications build 
their protection policies on type safety. In Java applications type checks act like security 
protection for permissions to information. Malicious code can exploit DSU mechanisms 
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to bypass existing security mechanism to perform forbidden actions and access illicitly 
sensitive data. Introducing DSU in these applications implies to ensure well typed actions 
and to preserve confidentiality of information. The behaviour of the update is another 
example, indeed, we would like to be sure that the update does not introduce code that 
alter data and functions in order to corrupt the use of the system. Expressing the 
semantical properties of the update and the program after the update ensures the integrity 
of the applications. We summarise and classify in Table 1 DSU researches on correctness 
properties according to the style of programming language and outline the applications 
area where they are required. The next section presents the use of formal techniques and 
approaches to establish correctness criteria. 
Table 1 Correctness properties in different programming paradigms and application areas 

Paradigms Properties Application area 
Sequential • Type safety: Neamtiu et al. (2006); Hicks 

(2001); Zhang et al. (2012); Stoyle 
(2006); Bierman et al. (2003). 

• Consistency: Frieder and Segal (1991); 
Lee (1983); Zhang et al. (2012); Stoyle 
(2006); Hashimoto (2007); Qiang et al. 
(2016); Giuffrida and Tanenbaum (2013). 

• Semantical correctness: Hayden et al. 
(2012); Altekar et al. (2005); Hashimoto 
(2007). 

• Reacheability: Gupta (1994); Gupta et al. 
(1996); Stoyle et al. (2007). 

• No crash: Zhang et al. (2012); Stoyle 
(2006). 

• Activeness safety: Noubissi et al. (2011); 
Arnold and Frans (2009); Hayden (2012). 

• Con-freeness: Stoyle et al. (2007). 

• General: Altekar et al. 
(2005); Lee (1983); Hicks 
(2001); Neamtiu et al. 
(2006); Gupta (1994); 
Hayden et al. (2012); 
Zhang et al. (2012); Gupta 
et al. (1996); Stoyle et al. 
(2007); Stoyle (2006); 
Hayden (2012); Bierman  
et al. (2003); Hashimoto 
(2007). 

• Distributed systems: 
Frieder and Segal (1991). 

• Operating systems: Arnold 
and Frans (2009); Giuffrida 
and Tanenbaum (2013). 

• Cloud computing: Qiang  
et al. (2016). 

Object oriented • Type safety: Malabarba et al. (2000); 
Hjálmtýsson and Gray (1998); Orso et al. 
(2002); Subramanian et al. (2009); 
Boyapati et al. (2003). 

• Consistency: Noubissi et al. (2011); 
Baumann et al. (2005); Hjálmtýsson and 
Gray (1998); Makris and Ryu (2007); 
Murarka and Bellur (2008); Murarka et 
al. (2006); de Pina et al. (2014). 

• Con-freeness: Lv et al. (2012). 
• Deadlock free: Murarka and Bellur 

(2008); Lounas et al. (2017b). 
• Activeness safety: Lv et al. (2012); 

Subramanian et al. (2009); Lounas et al. 
(2017b). 

• Updatability: Lounas et al. (2017b); 
Zhang et al. (2015). 

• General: Malabarba et al. 
(2000); Subramanian et al. 
(2009); Murarka and Bellur 
(2008); Boyapati et al. 
(2003). 

• Operating systems: 
Baumann et al. (2005); 
Makris and Ryu (2007). 

• Embedded systems: 
Noubissi et al. (2011); Lv 
et al. (2012); Lounas et al. 
(2017b). 

• Low level networking: 
Hjálmtýsson and Gray 
(1998). 
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Table 1 Correctness properties in different programming paradigms and application areas 
(continued) 

Paradigms Properties Application area 
Functional • Type safety: Gilmore et al. (1997); 

Duggan (2005); Buisson and Dagnat 
(2010). 

• Consistency: Gilmore et al. (1997). 

• General: Gilmore et al. 
(1997); Duggan (2005); 
Buisson and Dagnat (2010). 

Multi-threaded • Type safety: Makris (2009); Neamtiu and 
Hicks (2009); Anderson (2013). 

• Consistency: Makris (2009); Chen et al. 
(2007); Neamtiu and Hicks (2009); 
Murarka and Bellur (2008). 

• No crash: Chen et al. (2007). 
• Deadlock free: Anderson (2013); 

Murarka and Bellur (2008); Anderson 
and Rathke (2012). 

• Semantical correctness: Anderson 
(2013); Anderson and Rathke (2012, 
2009). 

• General: Makris (2009); 
Chen et al. (2007); Neamtiu 
and Hicks (2009); 
Anderson and Rathke 
(2012); Anderson (2013); 
Murarka and Bellur (2008). 

Component • Type safety: Chen and Huang (2009); 
Chen et al. (2010). 

• Consistency: Noubissi et al. (2010); 
Solarski (2004); Panzica La Manna 
(2011); Wahler and Oriol (2014). 

• Semantical correctness: Panzica La 
Manna (2011); Chen et al. (2010); Wu  
et al. (2008). 

• No crash: Wahler and Oriol (2014). 
• Activeness safety: Felser et al. (2007). 

• General: Chen and Huang 
(2009); Wu et al. (2008). 

• Service oriented 
applications: Chen et al. 
(2010). 

• Distributed embedded 
systems: Felser et al. 
(2007). 

• Telecommunication 
systems: Solarski (2004). 

• Automation systems: 
Wahler and Oriol (2014). 

• Distributed systems: 
Panzica La Manna (2011). 

4 Approaches for formalisation in DSU 

According to the level of formalisation, we distinguish four categories in the applications 
of formal methods in DSU. These categories fit in Rushby’s classification of formal 
methods into four levels of rigor (Rushby, 1997) classified from lowest to the highest 
level of rigor: 

• Level 0: this level corresponds to the absence of formal methods but formalisation 
can exist in development process. The validation is based on testing. 

• Level 1: this level corresponds to the use of concepts and notations from logic and 
mathematics such as set theory and functions (Hicks, 2001; Bierman et al., 2003), 
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type systems (Altekar et al., 2005; Neamtiu et al., 2006; Boyapati et al., 2003) and 
control flow graphs (Murarka, 2010). 

• Level 2: the methods of this level uses formalised specification languages with some 
mechanised supporting tools like type checkers or model checkers (Lee, 1983; 
Hayden et al., 2012; Chen et al., 2010; Stoyle, 2006; Wu et al., 2008). 

• Level 3: this level represents research works that use specification language with a 
corresponding formal proof method. Proof methods are mechanised by a proof 
checker or a proof assistant (Buisson and Dagnat, 2010; Zhang et al., 2012). 

Techniques from level 0 are out of the scope of this survey. These techniques have been 
surveyed in Seifzadeh et al. (2013) and Miedes and Muñoz-Escoi (2012b). Research 
works adapted formal techniques and used several formal approaches to specify different 
entities in DSU: the updated system, the update mechanism, the update itself and the 
desired properties. The notion of paradigm refers to the approach that expresses the 
specifications, the way that concerned elements and properties are expressed. We use the 
notion of technique to explain the way that the property is established. 

4.1 Formal techniques in DSU 

The effort to ensure DSU correctness leads to the use of a variety of techniques from 
different formal levels. We review in this subsection the principles of these techniques. 
The use of these techniques in formal approaches to establish correctness criteria is 
illustrated by Table 2. 

4.1.1 Theorem proving 
This technique (Bertot and Castéran, 2013) consists in specifying a program by the means 
of inductive properties satisfying verification conditions. Basically, properties of interest 
have the form of predicates that are proved using properties of the system and the rules 
and axioms of the theory used. The theorem-prover basically automates the 
demonstration (theorem prover) or checks the demonstration (proof checker). In some 
cases, due to the undecidability issue, the systems need guidance to fully discharge the 
proof (proof assistant). 

4.1.2 Model checking 
Model checking (Baier and Katoen, 2008) is a technique for the verification of finite state 
systems typically modelled by automata. The expected properties of the model are 
expressed by temporal logic formulas. Efficient symbolic algorithms are used to explore 
the model to verify if all possible configurations validate those properties. If a property is 
not verified, a counterexample is exhibited. 

4.1.3 Static analysis 
Static code analysis (Silva et al., 2008) is the analysis of computer software which is 
performed to collect some information about the behaviour of a system without executing 
it. This technique provides assistance and computing relevant information from a 
program to help developers to understand their programs and correct mistakes. There are 
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different forms of static analysis such as dataflow analysis, constraint-based analysis, 
type analysis and abstract interpretation. 

4.1.4 Program annotation 
Annotation (Hoare, 1969) consists in writing within the code the conditions that should 
be met before the annotated code is executed, as well as describing the logical state of the 
program after its execution. The logical formalisms underlying this approach are program 
logics like HL. A verification condition generator is used to produce a set of logical 
formulas that must be proved to ensure the correctness of the program with regard to the 
annotations. 

4.1.5 Refinement 
Refinement (Potet and Rouzaud, 1998) is the technique that synthesizes a program from a 
specification step by step. Each step increases the degree of precision with respect to the 
initial specification and introduces implementation details, such as the choice of 
algorithm for implementing a given function, or the choice of a concrete data type. Every 
step generates a number of refinement proof obligations that must be discharged to obtain 
a final program that has the same properties as the original specification. 

4.1.6 Rewriting 
Rewriting systems (Dershowitz and Jouannaud, 1990) are directed equations used to 
compute by repeatedly replacing sub-terms of a given formula with equal terms until the 
simplest possible form is obtained. This kind of transformation steps have applications in 
many areas such as specification and verification in software engineering, functional 
programming and computer algebra. In this technique, the system and its operations are 
represented by equations and rewriting rules and the properties are written in an 
equational form. The program satisfies the properties if they are deduced from the 
specification of the program by applying rewriting rules. 

4.1.7 Bisimulation 
Bisimulation (Sangiorgi, 2009) is a technique intended to characterize state equivalences 
and process equivalences in labelled state transition (LTS). A binary relation R(pRq) over 
an LTS is a bisimulation if for all state p′ with p →u p, it exists q′ with q →u q and (pRq) 
and if for all state q′ with q →u q, it exists p′ with p →u p and (qRp), where u represents 
an action that brings the state p to p′ (resp. q to q′). Bisimilarity is the union of all 
bisimulations. It offers a technique to prove process equivalences with two manners: state 
a relation R and prove that it is a bisimulation or construct R to establish the bisimulation 
between two processes. 

4.2 Formal approaches in DSU 

In order to ensure DSU correctness, research papers explored several formalisations 
approaches. In this subsection, we propose a classification of these works according to 
the paradigm of formalisation. This classification is motivated by our interest to explain 
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the basic ideas and concepts of formalisms and to show how they are exploited to 
formalise DSU and correctness criteria. 

4.2.1 Algebraic formalism 
This formalism relies on the modelisation of systems as many-sorted algebra consisting 
of a collection of data, typed operations which are specified on the basis of axioms. 

In Zhang et al. (2012), the authors presented an algebraic framework for specification 
and verification of DSU systems based on the mechanism of POLUS (Chen et al., 2007). 
The main idea is to express a DSU system as a rewriting system in which one can verify 
properties and check incorrect DSU updates. Three distinct parts are formalised: 

1 The programs in term of sort and operations. 

2 The update mechanism as a rewriting system. 

3 The patch that contains: added (deleted) variables and functions; states 
synchronisation and indirection functions. 

The authors defined the following main notions for program formalisation: 

• The sorts for sets of functions Set{F} and instructions List{S}. 

• The sorts for expressions (E) and programs (P). 

• The operator for program constructor: Pg: Set{F} * List{S} → P. 

• The sorts to represent threads, thread identifiers, and stack calls. 

Patches are formalised using the following sort: Set{F} * Map{F, F} * Map{F, V} * 
Map{V, V} → H, where Map{F, F} is a map from old versions of functions to new 
versions, Map{F, V} is a mapping from functions to used variables, and Map{V, V} is a 
mapping from old variables to new variables. The symbol H represents a constructed 
patch. 

The authors define then a rewriting system on programs configurations. For every 
instruction or update instruction, the rewriting system formalises how the configurations 
change. Four states are identified for updates: BfUpdate, Updating, Done and Abort. 
They represent respectively states: before the update, while updating, a finished update, 
and an interrupted update. The following formula (1) represents the rewriting rule for 
update initialisation. It expresses that the program P passes from the bfUpdate state to 
updating by the initialisation of memory storage M with information of the patch H. C 
represents the threads stacks. 

, , , , , , ( , ), ,< >< >bfUpdate P M C H updating P init M H C H  (1) 

This work focuses on two types of correctness: common property (such as consistency 
and no crash) and correctness based on properties defined by the user. Correctness 
criteria are formalised as predicates on configurations. The following formula is the 
specification for the no crash property: 

?( , , , , ) ,< > = =isAbort U P M C H true if U abort false otherwise  (2) 

If the application of rewriting rules, using the system sorts and operations, leads to true 
then the criteria is established. The process of verification is based on three parts: choose 
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an initial configuration, formalise properties and then verify. The formalisation is done 
within the Cafeobj method (Ogata and Futatsugi, 2003). This method allows to specify 
systems as observational transition systems (OTS). Then, the OTS are tailored to be 
specified in algebraic formalism as equational theory. This representation leads to 
formulas that are verified using theorem proving or model checking (Zhang et al., 2013, 
2014). 

In Chen et al. (2010), the presented framework implements dynamic service update 
on a service-oriented application on top of OSGi. The process of dynamic service update 
is formalised using the process algebra language finite state process (FSP). The authors 
defined the elements of the system including the update modules as FSP processes. They 
identify mainly the following processes: 

• Client and server processes: they represent the modules of the updated system. 

• Updatemanager and StateTransfert: these processes represent modules to 
respectively simulate an administrator to control the update sequence and to state 
transfer from the old version to the new state. 

• CurrentService (Cs) and NewService (Ns) to represent the implementations of the old 
and new version of an updated service. 

• Service interface and delegate: these processes are used to respectively define the 
service’s public methods and to coordinate interactions between the service interface 
and its service implementations. 

Figure 5 An example for FSP formalisation 

1. Client = (client.send → client.receive → Client). 
2. Server = (server.receive → server.send → Server). 
3. StateT ransfer = (cS.getstate → nS.setstate → StateTransfer). 
4. UpdateManager = (update.start → cS.block →  

nS.start → ns.run → cS.stop → update.end → END. 
5. Server_interface = (Server) @ {server.receive, server.send}. 
6. property ClientTrans = (server.receive → server.send → ClientTrans). 
7. Check_tran = (Server || ClientT rans). 

Methods of the different components are modelled as FSP actions. Both processes and 
actions use FSP operators to describe different functionalities. An extract of the 
formalisation is shown on Figure 5. The first four lines represent the specification of 
these processes: Client, Server, Updatemanager and StateTransfer. For every process P, 
the expression P.a represents an action a of the process. The notation (→) in FSP 
represents the prefix operator: a description (a → P) represents a process that initially 
engages in an action a, and then behaves exactly as described by P. Line 5 represents the 
server interface. It expresses, using the operator hide (@), that all behaviour except send 
and receive are hidden from the user. The authors ensure that the framework achieves 
deadlock freedom, type safety and behavioural correctness. The line 6 of the extract 
represents the property of transparency for the client. The property expresses that the 
client only sees the behaviour of sending messages and receiving messages from the 
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server. In line 7, the expression of the property is composed using the operator (||) with 
the server behaviour to check if it is verified by the system. 

The properties are expressed using fluent LTL and verified using the model checker 
labelled transition system analyser (LTSA). 

4.2.2 Functional formalism and type systems 
In this paradigm, we analyse the use of lambda-calculus and functional modelling to 
reason formally on DSU systems. 

The research in Bierman et al. (2003) proposed a formal framework for specification 
and reasoning on DSU based on a typed lambda-calculus. The authors introduce the 
update-calculus, an extension of lambda-calculus to support update. The framework is 
flexible, simple and extensible. The framework considers a program as a set of modules 
and an expression to evaluate. The expressions are represented by standard constructors 
(for instance: projection, application and let … in). Each module declaration has the form 
module Mn = m, where M is a module name, n is a version number, and m is a module 
body. An update primitive is introduced to load new versions of modules. The obtained 
update-calculus allows to update any module, including changes to types and their 
definitions. The calculus is based on a type system which guarantees that updates do not 
alter the type safety of a program. 

The semantics is defined by giving a set of reduction rules to evaluate expressions in 
their context. Updates are correct as long as the updated program is able to apply any 
reduction rule after the update since the type system accepts only updates that are correct. 
If an expression for loading an update module M is to be evaluated, the system verifies if 
the new module does not invalidate the type safety of the program, and if the number 
version of the module is greater than any existing version of M, the new module is added 
then to the set of modules. The authors presented a concrete example of a server with a 
standard loop for getting and handling events. The update operation is represented as an 
event. When it occurs, the system calls a special update handler which applies the 
defined semantics to load new functionalities, to redirect to new versions of functions and 
to initialise data. 

The authors presented in Stoyle et al. (2007) a program calculus that supports DSU 
on procedural, C-like languages. The framework is called Proteus. It is an extension of 
the update-calculus: the authors developed the possibility of inserting update points 
within the program to ensure con-freeness property, presented in Subsection 3.1.3. The 
limitations of con-freeness due to update postpones are addressed in other publications 
(Stoyle, 2006; Neamtiu et al., 2008): the authors propose Proteus-tx, an extension of 
Proteus which considers that updatable programs are structured around transactions and it 
proposes transactional version consistency (TVC) property for correctness. This property 
is used to deal with inconsistencies raised by multiple versions. They propose to 
distinguish functions that can be updated in mid-transaction without violating TVC and to 
reduce limitations related to timing. This is performed by extending a standard type 
system with effects to capture contextual effects of updates by expressing precisely the 
effect returned by the computation that has already occurred (the prior effect) and the 
effect of the computation that will take place (the future effect). These effects are used to 
ensure TVC in multi-threaded programs. 

In Anderson (2013), the authors presented a framework for the use of formal methods 
to specify and reason about DSU in multi threaded programs. The framework is based on 
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a type system with effects. The idea behind this work is that the safety of an update 
depends on a state characterised by the code and the shared resources, which is the key 
difference with (Neamtiu et al., 2008) who reasoned about transactions. The considered 
language is a simple lambda-calculus with primitives to handle explicitly resources 
access and update points. 

The type system ensures that the modified system will be well typed and behave as 
expected by keeping track of the effect of each update operation. The formalism includes 
a notion of world constraints to keep the difference between the effect of an update 
operation and the expected specification of an update (prior effects and modified effects). 
The main properties established are consistency of the update system by subject 
reduction, i.e., every reduction (except update reduction) preserves the effect and an 
update reduction leads to the desired effect. These principles are used by the author to 
establish deadlock free and type safety on concurrent programs (Anderson and Rathke, 
2009) and message passing programs (Anderson and Rathke, 2012). 

In Hashimoto (2007), the author presented a method to ensure behavioural safety 
based on the definition of a set of SUPs. The author models first safe runtime code update 
with a variant of high-order call-by-value language. In this language, a program is 
modelled as a labelled lambda-expression; and a labelled tree is then constructed for a 
program. The notion of code mapping is then introduced to identify point-wise 
correspondence between program P0 and its revision P1 which is used to extract 
(calculate) the modified tree nodes representing deleted, changed or inserted code in the 
labelled tree representing P0. The model precisely tracks the effect of update by defining 
an exact update model. This model makes use of explicit flow and dependency 
information which have been extracted from the labelled trees and modified tree nodes. 
The exact model uses information from execution traces about: the affected nodes, used 
values and state match operation to compute SUPs where no dependence on modified 
code exists and no affected values have subsequent critical uses. The model is then 
approximated by abstract interpretation of the semantics to derive a realistic set of SUPs. 
The program itself is used to obtain valid state transformers by reusing the computation 
of the initial program P0. 

In Buisson et al. (2016), the authors proposed a formal framework based on Coq 
proof assistant, which is based on a typed lambda-calculus, to establish DSU correctness 
for a component model based on python language called Pycots. The formal framework 
consists on an abstract model called Coqcots that allows proving properties on 
architectures or on manipulating architectures. The two models are used in an approach 
that ensures the construction of correct updates of the components. First, the current 
architecture of the target software is extracted using Pycots platform. The result is a Coq 
module containing a Coqcots architecture. The designer defines the reconfiguration and 
build the proof of its correctness within Coq. This is based on the formal definition of 
primitive reconfiguration operations such as create to add a new component and hotswap 
to change the behaviour of an existing component. This leads to proofs related to 
operations and preservation of architectural constraints. A reconfiguration script is then 
extracted using an extension of the Coq extraction mechanism to target Python language. 
The script is sent to the Pytcots manager after being improved with by the programmer 
with glue code such as concrete Python objects. At the reception of the script, the 
manager applies it to the target software system. 
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4.2.3 State-transition paradigm 
This formalism refers to the use of states and transition rules to describe systems. 

In Hayden et al. (2012), the authors proposed a framework for formal verification of 
DSU for C-like programs. They first give an approach to write specifications categorised 
in three types: 

1 backward-compatible specifications which are verified in both new and old version 

2 post-update specifications which concern only the new version 

3 conformable specifications expressing changes to conform existing features to the 
new version. 

They define then a formal transformation of the specifications to conform them to the 
update. 

A program is represented by a triple < p, σ, e> where p is the code, σ is the heap and e 
an expression to execute. The expression e represents either standard expressions or 
events defined by the programmer such as update event. The formal semantics expresses 
that if an update occurs, the configuration is changed to <pπ; σ; (eπ; 1)> where π = (pπ, eπ) 
represents the patch consisting of the new program code (including unmodified 
functions) and an expression eπ that transforms the current heap as necessary. The  
integer 1 is used to indicate that an update occurred. 

The verification is based on another transformation called program merging. This 
transformation takes a configuration of the old program and a patch and produces a 
configuration of a new program. The merge transformer contains transformation rules for 
both code and specifications written within the code. A proof that the obtained program is 
equivalent to the original program with the patch (a new code with a STF) is done by 
bisimulation. They proved that the program obtained by the merge transformation 
simulates every execution step in the old program with the update from the old to the new 
version, and that for every trace in the merged program, there is a corresponding trace in 
the old program with the patch. The authors used a tool (Otter) for symbolic execution 
and a tool for verification (Thor). 

In Wu et al. (2008), the authors presented an abstract state machine (ASM)-based 
high level semantical model for service-oriented systems using the OSGi framework. The 
modelled architecture is based on the coordinator bundle agents responsible of update 
coordination and the functional bundle agents responsible for the tasks of the application. 
In order to capture the requirements of both agents, ground models are specified for both 
of them. 

Ground models are based on the definition of states, behaviours and conditions. For 
instance, the states of the ground model of a coordinator bundle agent are in the set: {Init, 
waiting for update, prepare updating, update monitoring, exit}. They represent 
respectively the initial state; the stage of waiting updating; the stage of pre-updating with 
information collection about the program state; the stage at which updating is running 
and the coordinator bundle agent monitor the procedure and the final state. 

The ground model represents an abstraction of the system. Its formalisation is based 
on the concepts of universes, signatures and behaviours. Universes represent the 
manipulated data (for example: universe of applications, universe of bundles, universe of 
services, universe of versions …). Signatures represent types of operations. For example, 
the expression updating: service → boolean, is used to indicate whether the service is 
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updating or not. The behaviours are expressed as formal rules to capture system 
functionalities. For example, in order to choose the right moment for updating, a formal 
rule is specified to express that the moment to update a bundle is when no other bundles 
depend on it. The specification of ground models is refined to a concrete representation. 
The defined rules are used in refinements to ensure the correctness of the update such as 
updating order, selection of updating moment, dependencies and service compatibility. 
The verification of the framework is performed within the model checker SMV. 

In Zhang et al. (2015), the authors presented a formal framework based on state 
machines formalism to model dynamic software updates and use the formal model to 
identify SUPs. The approach determines update points that satisfy properties required by 
the updates on both the new and the old version of the program. The properties are 
expressed using temporal linear logic (LTL) and the verification is done with model 
checking. If counterexamples are found, the corresponding states are excluded and model 
checking is run again. The process is iterated until all desired properties are successfully 
verified. 

The authors studied the case of a RaiCab system. Autonomous vehicles establish 
connections with a device called controller in order to pass a crossing. The authors 
propose to add a feature to the system. The desired feature states that when that vehicle 
approaches the crossing, it must send a message check to the controller so that it must 
receive two messages from the controller to enter the crossing instead of one message in 
the first version of the system. They studied two properties related to the behaviour of the 
system: crossing property and passability. The first property says that if the RaiCab is in 
a no return (noRet) section, then the gate must be closed. The second property expresses 
that if the gate opens, and the RaiCab did not pass yet, it must finally reach a no return 
section. The following LTL formulas represent respectively the properties: 

( )≡ →crossing noRet gateClose  (3) 

≡ ∧ ¬ → passability gateOpen passed noRet  (4) 

The symbols □ and ◊ are temporal operators globally (always) and eventually. To apply 
the proposed methodology, the authors considered that initially, all states of the systems 
can be considered as safe to perform the update. By applying the proposed algorithm, 
model checking revealed counterexamples that violate these properties. The states in 
which the violation occurs are removed from the set of SUPs. Finally, they obtain safe 
points that always satisfy both the properties. The authors studied also updatability of the 
system. The formalisations and verification are performed within the Maude system 
(Maude, 2017). 

4.2.4 Axiomatic formalism 
The axiomatic paradigm belongs to the category of works that aim to establish formally 
behavioural properties. The basis of this family is an extension of HL (Hoare, 1969). 

In Lounas et al. (2015), the authors described a method to establish the equivalence 
between specifications desired by the programmer for the new version of an updated 
program and specifications that are performed actually by the DSU system. The 
considered DSU system is dedicated to Java Card applications. The authors established 
code update semantical correctness at bytecode level. The specification of the update is 
contained in a patch obtained by a module which compares the old and the new version 
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of a class. The application of the updates is expressed as annotations. An annotation 
module produces an update-annotated program. Figure 6 illustrates an example (Lounas 
et al., 2015) of the application of the content of a patch to a program bytecode. The 
bytecode represents a function computing the sum of two integers. First, it initialises the 
arguments and loads them (iload instructions) then the sum operation is performed 
(iadd). The result is then stored. The function is supposed to be updated to perform a 
substraction. The patch expresses that to perform the update, the instruction at program 
counter (line) 4 is deleted Del @ 4 and a substraction instruction is inserted instead isub 
at pc 4. The information about update are inserted as special comments on the annotated 
bytecode. 

The authors present a predicate transformation calculus to derive the specification of 
the updated code [weakest precondition (WP) calculus]. WP calculus is based on Hoare 
triples. A program S specified by its precondition P and its post condition Q represents a 
triple {P}S{Q}. The WP calculus is used to derive precondition given a program and its 
post-condition. The authors extend the calculus to include update operations inserted as 
annotations. The obtained specification is then matched with the specification desired by 
the programmer. The equivalence of specification obtained by predicate transformation 
and the specification initially written by the programmer, using theorem proving, leads to 
state update correctness. 

In Charlton et al. (2011), the authors proposed an extension of HL to reason about 
DSU on imperative languages and establish behavioural properties. The approach is 
based on the definition of an imperative language with features for memory allocation: 
the procedures are stored within the heap. An assertion language is then defined to extend 
HL in a way that keeps track of the code specification and memory access. Specifications 
are written as special comments within the updated code. The author revisited the 
example studied in Bierman et al. (2003). The web server code example is modelled in 
the imperative language and then annotated using the assertion language with 
specifications and properties to verify in terms of pre and post conditions. 
Demonstrations are performed within the tool Crowfoot. 

Figure 6 An example of an annotated code (see online version for colours) 

 

4.2.5 Graph-based modelisation 
Researches of this category use graph-based representations of the systems, and build 
theories upon this modelisation to derive correctness properties. 
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In Murarka (2010) and Murarka and Bellur (2008), the authors present a formal 
framework for DSU correctness for multi threaded and object oriented programs. They 
built formalism upon graph-based modelisation in order to state theorems that ensure 
correct DSU by determining SUPs and performing update schedules. 

The authors used flow graphs and inter-procedural flow graphs (IFG). The flow 
graphs are used to represent control among the statements of methods and activities. IFG 
represent the control flow in a program: the flow of control within the methods and the 
flow of control across the methods. These graphs are used to compute execution points 
and to deduce SUPs and update schedules. In order to represent the interthread 
dependencies in a program, the authors used a parallel execution graph (PEG). This 
representation uses different edges for notification and synchronisation between threads 
and allows to state sufficient conditions that an update must satisfy to avoid deadlock 
situations. After the insertion of blocking UCs, a blocking state graph (BSG) is used for 
checking the feasibility of updates and to compute update schedules. 

The authors studied also consistency of updates. They proposed several models for 
data update (by applying STFs) and program activities. The consistency is based on the 
notion of compatibility: every objects is compatible with the old version or compatible 
with the new version. According to this classification, several cases are considered, for 
instance, an object may be created by an old version but is compatible for use by the new 
version (backward-state compatible objects) or an object created by the new version can 
be used by the old version (forward-state compatible objects). Correctness conditions are 
then stated for both old version and new version of the program. In order to reach a 
consistent updated program, every request must either ensure conditions over the old 
version or over the new version. 

Graph-based representation is used (Murarka et al., 2006) in order to ensure the 
consistency related to function versions. The main idea is to isolate some methods from 
the process update. These methods called encapsulated methods are used to represent 
atomic actions. An update dependency graphs (UDG) is used to define correct update 
sequences that preserve the isolation and determine the order in updating classes. This 
same idea was used by Lee (1983) to ensure update consistency. 

4.3 Trends in formalisation 

We presented in this section formal techniques and formalisms used to establish 
correctness in DSU systems. Table 2 shows the classification of research papers 
according to formalisms and techniques used to establish correctness properties. The goal 
of Table 2 is to outline for every correctness criteria the formalism used to its 
specification and the way it is established. 

Some facts are pointed out from the table with regard to correctness criteria. The first 
fact is that some formalisms are used exclusively to one criteria, for example, axiomatic 
formalism is used exclusively to specify semantical correctness. The table outline also 
that there are several ways to establish one correctness criteria. For instance, consistency 
is formalised in four formal paradigmes (algebraic, functional, state transition and 
graphs) and it is verified using two techniques: theorem proving and static analysis. 
These two techniques belong to different levels of rigor. 

The study of formal specification and verification of DSU correctness leads us to the 
following observation: the application of formal methods in DSU can be categorised into 
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two levels: abstract or design level and code level. Code level refers to criteria such as 
type safety and version consistency (Stoyle et al., 2007; Neamtiu et al., 2008; Lounas  
et al., 2015; Hayden et al., 2012). The second category relates to the application of formal 
methods when designing DSU systems. Abstract level approaches (Zhang et al., 2014, 
2015; Wu et al., 2008; Murarka and Bellur, 2008; An et al., 2015) ensure system 
properties such as deadlock free. This is performed by specifying abstract behaviours for 
the system. The specified properties are related for example to update operations order or 
interactions with the application environment (An et al., 2015). We note that formal 
methods may be suitable for one or both levels. For example, formalisms based on state 
transition paradigm with refinement techniques are suitable to the application of formal 
methods at the earliest stage of the development process and thus are suitable for the 
design level whereas annotation is suitable for the code level. Some formal approaches 
are used in both levels. For instance, model checking is used to design correct updates in 
(Zhang et al., 2015) and it is used in Lounas et al. (2017b) at code level to the same 
property (updatability). 

Finally, Table 2 may suggest the choice of a formal method or the choice of a higher 
level of formalisation. For example, researches analogous to Hayden et al. (2012) and Wu 
et al. (2008) may use model checking to automatically establish correctness of semantical 
properties. Researches using functional formalism may use theorem proving to establish 
type safety and semantical correctness. 

5 Discussion 

The use of formal methods in DSU is quite recent and doubly challenging: 

• At methodology and formalisms level: in conventional software development 
methods, software is designed without consideration to the possibility of dynamic 
updating. Although the use of formal methods during the software development 
process at different levels, most of applications were not developed to be 
dynamically updated. DSU introduces techniques and features that make necessary 
an early thinking about formalisation in term of documentation, prediction and 
constraints. 

• At the level of the correctness criteria: DSU is used in critical applications areas. The 
use of formal methods is necessary to establish DSU correctness. The differences 
between applications area, techniques used in DSU systems and constraints related to 
the application area lead to several definitions of the notion of DSU correctness. The 
choice of the suitable formalism is impacted by the criteria that a DSU system has to 
ensure. 

At the light of the surveyed papers, we outline some research trends about methodology 
and formalisation. Table 1 allows to outline the kind of properties to take into account in 
some applications: for example, in concurrent programming, one has to verify that the 
introduced dynamic update does not alter the deadlock free property. The use of DSU in 
object oriented programs must consider the consistency while updating the different 
objects created by the application. Table 1 is designed to allow the selection of 
correctness criteria related to an application style and area. 
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Table 2 Formal paradigms and techniques for correctness criteria 
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In Table 2, we highlighted the formalisms and techniques used to establish correctness. 
This table allows to establish links between approaches of formalisation and correctness 
criteria and thus help to decide which is the most suitable approach for some correctness 
criteria. It appears that interesting extensions may be explored. For example, in Anderson 
(2013), type systems are improved with effects to capture specifications for  
multi-threaded C programs. We think that such extension will help formal reasoning on 
DSU for other types of languages (object oriented for example). Another possible 
extension concerns the behavioural properties that use principally HL and state transition 
formalism. Extensions of HL are defined in formal reasoning for DSU in sequential 
programs, analogously the idea may be used to establish DSU correctness in some 
paradigms like object oriented or functional programming, in addition to the use of an 
algebraic formalism to reason about DSU in object oriented programs as extension to 
Zhang et al. (2012). 

Another observed point concerns formalisation. Two categories are outlined 
considering whether the formalisation is performed after the full development of the 
system or before and during its development. In some papers, the process of 
formalisation is done after the development of the system (Noubissi et al., 2011; Chen  
et al., 2007; Zhang et al., 2012) whereas in other papers, this formal study is done before 
or during the process of programming (Murarka, 2010; Hayden et al., 2012; Anderson, 
2013; Stoyle, 2006). In this trend, research papers pointed recently the importance to 
build update aware applications (Giuffrida and Tanenbaum, 2009; Giuffrida et al., 2017), 
the authors used the expression live update-friendly systems to describe this idea. In An 
et al. (2015), Zhang et al. (2014, 2015) and Wu et al. (2008), the authors used formal 
methods at design level. The interaction between this approach for DSU formalisation 
and the promising idea of building dynamic update aware software may foster research 
with regard to this trend. In ANSSI (2015), the French Agence Nationale de la Sécurité 
des Systèmes d’Information (ANSSI) the authors has proposed a dedicated process 
allowing to certify a product that can be dynamically changed, certifying the update code 
and the loader. It defines the concepts and the methodology applicable to the evaluation 
of a product embedding a code loading mechanism and the usage of this loader as part of 
the assurance continuity process. 

The surveyed researches raise the following issues in formalisation: some DSU 
systems are implemented by transforming the initial program to be updatable (Stoyle  
et al., 2007; Giuffrida and Tanenbaum, 2009; Orso et al., 2002). This is performed for 
example in Orso et al. (2002) with proxy classes. The obtained updatable program is 
supposed to be equivalent to the initial version. We believe that this equivalence have to 
be verified using formal methods in order to avoid erroneous behaviours in such program 
transformations. Another issue is related to the application area of updated systems. As 
outlined, the application of formal methods for DSU correctness is a challenging task. 
This is even more accentuated with resource limited applications such as embedded 
systems. Recently, in Lounas et al. (2017a), the authors pointed out the difficulty to 
embed formal verification for semantical correctness in a DSU system for Java Card 
applications. 

Finally, research trends concerning DSU correctness outlined that common properties 
have attracted more research that semantical correctness of programs. The use of DSU in 
critical applications and their need for certification in security issues suggest that both 
properties should be considered. A dynamic update for a critical system must be verified 
to be type safe but this is not enough, indeed, we must ensure that the updated program 
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behaves as expected and does not introduce malicious behaviours. We notice through the 
surveyed articles that some applications of DSU system in critical domains do not use 
formal methods but project it in future works. Information collected in this survey is 
useful to such a perspective to formally ensure DSU correctness. 

6 Related works 

Researches about DSU were surveyed in several papers according to different points of 
view. In Miedes and Muñoz-Escoi (2012b), the authors presented a chronological survey 
of DSU systems. This survey explores the goals of DSU, its techniques and application in 
several domains with a focus on distributed programs. In Seifzadeh et al. (2013), the 
authors presented a taxonomy of DSU systems according to several views such as 
evaluation metrics (e.g., supported changes and predictability of the updates) and reviews 
based on the presentation of DSU techniques like state transfer techniques and choice of 
the time of update. In Giuffrida and Tanenbaum (2010), the authors presented a 
classification according to the nature of the update whether it concerns changes in code, 
data or resources like memory. In Miedes and Muñoz-Escoi (2012b), the authors 
presented a survey that focuses on goals and requirements of DSU and the presentation of 
its principle techniques. 

In de Pina (2016), the author presents a considerable survey to compare DSU systems 
with regard mainly to used techniques, flexibility and efficiency. The notion of 
correctness in this work is based on the development of a testing framework for DSU. He 
also presented several classifications for DSU systems. For example, the document 
compare systems whether they are transformed to support update or no. They are also 
compared to point out if they respond to all DSU challenges to point out systems that do 
not implement some features such as Dmitriev (2001). Another presented comparison is 
related to either systems adopts patch generation approaches to prepare updates or relies 
on whole program update approaches. 

Existing surveys helped us in the assimilation of different mechanisms and 
techniques, but there is an evident lack in response to the increasing need to establish 
formal correctness of DSU. Our survey complements the existing surveys by bringing 
new points of view. We proposed a classification according to the style of the 
programming languages. This classification includes more styles than the one presented 
in Seifzadeh et al. (2013) (procedural, object oriented and functional).We were aware to 
present systems from diverse applications areas. We detailed correctness properties and 
did more than a recapitulation. Our survey explains properties in order to choose suitable 
formal methods to establish them. The novelty of our survey is the categorisation of the 
use of formal methods to establish DSU correctness. 

7 Conclusions 

DSU systems are increasingly gaining interest as the most promising solution to software 
evolution and high availability systems. DSU solutions are developed for systems from 
different application areas and programming styles. 
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Applying DSU raises correctness issues because an update can introduce errors that 
corrupt systems functionalities. In this paper, we presented a state of the art related to the 
application of formal methods to DSU correctness. We outlined that DSU is a critical 
feature in applications requiring high availability and that the application of formal 
methods strengthen considerably safety and security of DSU systems. We began by 
presenting the major challenges in DSU and pointed out the importance of correctness. 
Then, we gave a classification of DSU systems according to programming paradigms. 
We studied the different notions of DSU correctness and studied the use of formal 
methods to establish them. 

As far as we know, this is the first survey about the application of formal methods in 
DSU. We presented a comprehensive review of DSU correctness criteria and proposed a 
classification of formalisation approaches. The classification shows which formal 
methods have been used in DSU and how they were used to deal with correctness criteria. 
This contribution is thought to assist ongoing researches and help in selecting the 
appropriate approach to formally establish DSU correctness. We identified on the base of 
the surveyed articles, some open research directions by outlining relations between 
formalisms, properties and DSU development. Formalisation in DSU is a quite recent 
research field. The application of DSU in several application areas and the richness of 
formalisation approaches lead to papers from different scientific background and thus to 
interesting potential scientific collaborations. We believe that this contribution provides a 
reference in comprehension and investigating the application of formal methods to DSU. 
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