

 76 Int. J. Critical Computer-Based Systems, Vol. 9, Nos. 1/2, 2019

 Copyright © 2019 Inderscience Enterprises Ltd.

Formal methods in dynamic software updating:
a survey

Razika Lounas*
LIMOSE Laboratory,
Faculty of Sciences,
University of M’hamed Bougara of Boumerdes,
Avenue de l’indépendance, 35000, Boumerdes, Algeria
Email: razika.lounas@univ-boumerdes.dz
and
Xlim Laboratory,
University of Limoges,
123 Avenue Albert Thomas, 87700, Limoges, France
*Corresponding author

Mohamed Mezghiche
LIMOSE Laboratory,
Faculty of Sciences,
University of M’hamed Bougara of Boumerdes,
Avenue de l’indépendance, 35000, Boumerdes, Algeria
Email: mohamed.mezghiche@univ-boumerdes.dz

Jean-Louis Lanet
INRIA LHS-PEC,
263 Avenue Général Leclerc, 35000, Rennes, France
Email:jean-louis.lanet@inria.fr

Abstract: Dymanic software updating (DSU) consists in updating running
programs on-the-fly without any downtime that leads to systems unavailability.
The use of DSU in critical applications raises several issues related to update
correctness. Indeed, an erroneous dynamic update may introduce safety
vulnerabilities and security breaches. In this perspective, the use of formal
methods has gained a large interest since they respond to the high need of rigor
required by such applications. Several frameworks were developed to first
express update correctness which is based on several criteria. Then, the
proposed formalisms are used to specify DSU systems, express correctness
criteria and establish them. In this paper, we present a review of researches on
the application of formal methods to DSU systems. We give a classification of
systems according to the paradigms of programming languages and then we
explain the correctness criteria and categorise the articles regarding the
approaches of formalisation to establish the correctness. This information is
useful to help ongoing researches in having an overview on the application of
formal methods in DSU.

 Formal methods in dynamic software updating: a survey 77

Keywords: dynamic software updating; DSU; formal methods; correctness
criteria; critical systems; systems safety; code update; data update; update
timing; semantical correctness.

Reference to this paper should be made as follows: Lounas, R., Mezghiche, M.
and Lanet, J-L. (2019) ‘Formal methods in dynamic software updating:
a survey’, Int. J. Critical Computer-Based Systems, Vol. 9, Nos. 1/2,
pp.76–114.

Biographical notes: Razika Lounas is a final year PhD student. She has the
grade of Teacher-Researcher at the Computer Science Department at the
University of Boumerdes, Algeria since 2009. She is also a member of
LIMOSE Research Laboratory at the same university and a member of Xlim
Laboratory at the Limoges University, France. She received her Magister
Diploma form the Boumerdes University in 2009. Before that, she received her
Diploma of Computer Engineering at the Tizi Ouzou University, Algeria. Her
main research interests are dynamic software updating, formal methods and
java card applications.

Mohamed Mezghiche is a Professor in the Computer Science Department at the
University of Boumerdes Algeria. He is also a Team Leader and Director of
LIMOSE Laboratory at the same university. He received his PhD in Theoretical
Computer Science from the University Paris 6 (France). His research interests
are formal methods, program certification, theorem proving, logic and
functional programming.

Jean-Louis Lanet is the Director of the High Security Labs of Inria-RBA.
Previously, he was Full Professor in the Computer Science Department at the
University of Limoges (2007–2014). He is also the Team Leader of the Smart
Secure Device (SSD) research group. Prior to that, he was a Senior Researcher
at the Gemplus Research Labs (1996–2007). During this period he spent two
years at the INRIA (Sophia-Antipolis) (2003–2005) as an Engineer at the
Direction des Relations Industrielles (DirDRI) and as a Senior Research
Associate in the Everest team. He started his career as a researcher at the
Elecma, Electronic division of the Snecma, now a part of the Safran group
(1984-1995) and his field of research were on jet engine control. His research
interests include security of small systems like smart cards and software
engineering.

1 Introduction

1.1 Context and motivations

In order to add features or fix bugs in programs, dynamic software updating (DSU)
systems allow code to be patched on-the-fly without requiring downtime. This is an
important feature in critical systems that must run continuously or that can suffer attacks
during their life time and must be upgraded. DSU is also referred as on-the-fly program
modification, online version change, hot-swapping, or dynamic software maintenance
(Seifzadeh et al., 2013).

 78 R. Lounas et al.

Updating software at runtime is a challenging activity: when we think about critical
systems, we are able to identify objects such as smart-phones, modern cars and personal
electronic documents and application areas such as air traffic control, banking or
healthcare. We are aware that in this kind of applications, any discontinuity of service to
perform a classical shut down, update and restart leads to considerable losses. Besides,
this kind of systems needs to be managed from a safety and security point of view,
keeping their software up to date. For example, DYMOS (Lee, 1983) was implemented in
banking system and EmbedDSU (Noubissi et al., 2011) is a system developed to support
DSU for Java Card applications. Challenges raised by DSU are categorised into the
following aspects:

• Code update: the essential functionality of any dynamic updating system is the
ability to access new versions of program methods and classes. The challenges
related to this aspect are to define techniques to identify updated parts of the code
and techniques to allow the system to access the new versions of functions and
classes.

• Data update: the second task in developing a DSU system is to transfer the state of
the old program in order to make it compatible with the new version. A program
state is defined, according to the style of programming, by a set of variables, stacks,
objects in the heap or tables in a data base. This aspect of DSU requires the
developer to write code that migrate the data structures to the new version. This code
consists in state transfer functions (STFs). The challenge consists in defining
techniques to allow the developer to write or infer STFs and define semantics for
their application on running programs.

• Update timing: the timing at which the update can take place is an important
decision when designing a solution for DSU. The greatest challenge of update timing
is to establish a trade-off between applying updates quickly and consistently.
Techniques related to this aspect are designed to detect and to calculate points where
the update can be updated without violating the system safety. Such points are called
safe update points (SUP) or quiescent states. This aspect requires also, in some cases,
to define mechanisms to bring the system to such points.

• Correctness: the considerable contribution of DSU systems in term of high
availability may be mitigated by errors introduced by the application of DSU. A
challenging task is how to ensure that a system after being updated will behave as
expected and that DSU systems will not bring any inconsistencies or system crash.

Among the challenging aspects of DSU, the correctness represents a transverse question.
Indeed, in order to make sure a system is correctly updated, it is important to ensure that
we obtain the expected semantics of the program, that STFs are correctly applied and that
selected update points guarantee the safety of the system.

For critical systems, DSU correctness is a major concern. Indeed, erroneous updates
lead systems to safety vulnerabilities and security breaches: an update may behave in an
unexpected way and violates security invariants. Besides, malicious attempts to upgrade a
running part of a system may have disastrous consequences. In this perspective, the use
of formal methods is a means to ensure DSU correctness since they offer the rigor
required by critical applications and represents an answer to several concerns related to
DSU correctness. Besides, critical systems and in particular security-based systems must

 Formal methods in dynamic software updating: a survey 79

pass certification procedures. The common criteria for information technology security
evaluation (Common Criteria, 2016) are an international standard for the security of
software and hardware products established in 1999. There are seven evaluation
assurance levels (EALs) defined in common criteria, where EAL 7 is the strongest. They
define the degree of rigor and depth that have been applied to assure the claimed security
properties. Assessment at the two highest levels, EAL 6 and 7, requires formal methods
to some extent, and gives not only the assurance that the security functions are
implemented, but also that these functions are correct with respect to the security policies
defined in the security target of the product. The use of formal methods in DSU offers
means to specify the systems, the changes and criteria to ensure correctness with the rigor
required by critical applications, security-based systems and high certification levels.

1.2 Focus and contribution

DSU systems are developed for a large variety of systems. They range from operating
systems (Baumann et al., 2005; Arnold and Frans, 2009) to automation systems (Wahler
and Oriol, 2014), networking (Hjálmtýsson and Gray, 1998), embedded systems
(Noubissi et al., 2011) and service oriented applications (Chen and Huang, 2009). The
establishment of the formal correctness in such diverse applications leads to the definition
of several notions of correctness based on different criteria and related to the different
aspects of DSU and to the use of various formalisms to specify DSU systems and
establish correctness.

Researches in terms of formalisation in DSU are more recent than researches in
developing DSU techniques based on evaluation metrics and tests. But although quite
recent, many researches were done and several ideas emerged, making the crossing of
formal methods and DSU a promising research area. The emergence of formalisation of
DSU systems in the rich and diverse tapestry of software formalisation is reflected by the
increasing number of papers about this topic. The aim of this paper is to present a
comprehensive review of the literature on the use of formal methods to establish DSU
correctness. Surveys related to the techniques for code and data update, update timing,
comparative studies related to DSU techniques, testing and evaluation metrics are out of
the scope of this paper. These concerns are discussed especially in Seifzadeh et al.
(2013), Miedes and Muñoz-Escoi (2012b) and de Pina (2016). As far as we know, this
survey is the first related to the application of formal methods on DSU systems. The
contribution of our paper is threefold:

• We present DSU systems from diver’s application area classified on the base of the
programming style. The aim of this part is to provide a representative overview
about DSU which forms a required background to address details related to
correctness criteria.

• We give a comprehensive presentation of correctness criteria and propose to classify
research papers in a way that gives a clear reading of the link between correctness
criteria, style of programming and application areas.

• We propose a classification of the research papers according to the formalism used to
specify DSU and correctness criteria. We outline how correctness is established by
formal techniques. This contribution is meant to help ongoing researches in

 80 R. Lounas et al.

understanding existing works. We provide a practical representation in term of
deciding the suitable formalisms and techniques to establish correctness criteria.

Figure 1 illustrates the elements of our contribution which ends by discussing trends in
the application of formal methods in DSU systems and highlighting some interesting
research directions.

1.3 Outline

This paper is organised as follows: Section 2 gives an overview of different DSU systems
trough a classification according to paradigms of programming languages. Section 3
surveys properties that ensure DSU correctness. In Section 4, we present paradigms of
formalisms used to specify and establish DSU correctness. In Section 5, we discuss the
state of the art and point out some directions of future research. We present related works
in Section 6 and then conclude in Section 7.

Figure 1 Elements of the contribution (see online version for colours)

2 Dynamic software updating systems

In this section, we give an overview about DSU systems classified according to the main
paradigms of programming languages. For every presented system, its application area is
outlined if provided in the research paper. The considered classification allows first to
present in the same subsection technical choices to address DSU challenges in systems
that belong to the same paradigm and thus raises similar concerns. Secondly, each
programming language has its own mechanisms for running code, accessing,
manipulating and protecting data. These concerns, combined with DSU techniques for
code update, data update and update timing, are crucial to define DSU correctness criteria
and formalisation issues which will be detailed in Section 3 and Section 4.

2.1 Sequential programming

Sequential programming languages have been considered for the implementation of DSU
systems in Arnold and Frans (2009), Neamtiu et al. (2006), Hicks (2001), Gupta and
Jalote (1993), Holmbacka et al. (2013) and Lv et al. (2012).

 Formal methods in dynamic software updating: a survey 81

2.1.1 DSU for server applications
In Neamtiu et al. (2006), the authors presented Ginseng, a DSU system for C server
applications. The system is composed of three parts: a compiler, a patch generator and a
runtime system. First, the compiler generates an updateable program from an initial
version of the program by mainly adding calls to mediator functions to access updatable
structures. The patch generator computes the difference between the updatable version
and the new desired version. The patch is then passed to the runtime system with
information about the program state to perform the dynamic update. This system is based
on function indirection for code update. Ginseng does not support changes to active
methods on stack, so SUPs are identified when no changed methods are running. Data
update is performed using STF generated by the patch generator. These functions are
applied when the updated data is first invoked using the previously inserted mediator
calls.

2.1.2 DSU for embedded systems
In Holmbacka et al. (2013), the authors developed a DSU system for C-based embedded
systems. Their framework is based on FreeRTOS (FreeRTOS, 2016). The system relies
on a separation of FreeRTOS tasks in the form of executable and linkable format (ELF)
and a dynamic linking of ELF binaries for code update. This provides the ability to insert
or to suppress binary files during execution. The programmer uses annotations to express
updates and chooses update points. A state is safe to perform an update if no external
events such as inter task communication or open file descriptors may disturb the state of
the task. Due to the resources limits in embedded systems, the state transfer is performed
by storing temporally the context in a special memory segment. This allows the new
version to continue with the same addresses. When the new code is available, the state is
transferred to its permanent emplacement.

In the same context, the authors in Lv et al. (2012) presented DSSUS: dynamic
satellite software updating system for on-board softwares that support Vxworks systems
(Vxworks, 2016). It consists on dynamically loading/unloading modules on the basis of
several analysis. An ELF analysis records the size of code and data segment, the name
and size of global variables and static variables. This information is used by dependencies
analysis in data and modules so that software is loaded and linked according to the
dependency relation. In order to perform that update, the updater inspects if tasks (current
task and tasks in calling stack) are in the module to be updated to detect a SUP to ensure
update safety.

2.1.3 DSU for operating systems
The system Ksplice (Arnold and Frans, 2009) is developed to dynamically update the
kernel of Linux operating system. To perform updates, Ksplice works in three phases:
first, a patch is generated by comparing ELF files of old and new versions, then a
replacement code in which addresses and symbols are resolved is generated. The system
uses then binary rewriting to insert the changes into the running kernel. Ksplice uses
function indirection to jump to the new version of a method by installing trampolines at
update time. The system overwrites the first few instructions of the old version’s method

 82 R. Lounas et al.

body with a jump instruction to the new method. Future calls to an updated method jump
through this trampoline to the latest version’s body. Data update is implemented with the
use of the concept of shadow structures. It consists in extensions to the original structures
that have the extra fields that do not fit in the original structure. The DSU system adds a
pointer to a shadow structure to the end of every updatable structure in the initial version.
When preparing each update, the DSU system rewrites the code that accesses the new
fields to use the shadow instead.

In Giuffrida and Tanenbaum (2013), the authors present PROTEOS, a new research
operating system designed to safely and automatically support many classes of live
updates. The main novelty of this system is its approach to detect safe states to perform
updates: updates are installed only when particular constraints, defined by the
programmer, are met by the global state of the system. This is done by defining state
filters: they are generic Boolean expressions written in a C-like language and evaluated at
runtime. The system allows update at process level instead of the separation of code and
data. This approach allows stable update process and ensures that only one version at the
time is logically visible to the rest of the system and allows to perform rollback in case of
run-time errors.

2.1.4 DSU for cloud applications
In Qiang et al. (2016), the authors proposed a DSU system for cloud applications written
in C called multi-version execution for updating of cloud (MUC). The system uses the
multi version execution approach to handle the inconsistent issue. The approach is based
on four parts: first, a static analysis is performed to produce update information: an
update file indicating modifications and an inter process communications files containing
the calls of the application. When an update is received, the system forks a new process
of the old version. Then, a synchronisation step is used to ensure that the recently created
process executes the same calls as the original process. After that, it is updated when it
reaches an update point by two transformations: state transformation and data
transformation. The two versions are synchronised again at system calls level so that they
could be seen as one process. Finally, the system ensures that when the old version
executes system calls related to interprocess communication, it will copy its parameters
and outputs to the address space of the new process to guarantee the consistency of the
application.

2.2 Object oriented programming

Several systems are proposed for DSU in object oriented programming (Hjálmtýsson and
Gray, 1998; Noubissi et al., 2011; Orso et al., 2002; Malabarba et al., 2000; Subramanian
et al., 2009). The most studied languages in this category are Java and C++. DSU systems
for Java applications are classified into two categories: the first one concerns the
system-based on the modification of the Java Virtual Machine to support DSU
functionalities and the second category represents systems based on other techniques like
proxy classes to implement DSU. Jvolve (Subramanian et al., 2009), DVM (Malabarba et
al., 2000) and EmbedDSU (Noubissi et al., 2011) are systems of the first category. DUSC
(Orso et al., 2002) and Rubah (de Pina et al., 2014) belongs to the second category. DSU
systems for C++ are presented in Baumann et al. (2005) and Hjálmtýsson and Gray
(1998).

 Formal methods in dynamic software updating: a survey 83

2.2.1 DSU for Java with VM support
Jvolve (Subramanian et al., 2009) is based on a virtual machine called Jikes RVM. It has
a module for update preparation tool (UPT) which determines, from the old and the new
version of an application, what are the modified, deleted and added classes. Instances are
updated using functions written by the programmer. New classes are loaded using the
standard Java class loader. The virtual machine checks if there is no updated method in
the stack to perform the update. EmbedDSU (Noubissi et al., 2011) is very similar to
Jvolve. It is a system developed to implement DSU functionalities in Java Card
(Java Card, 2016). It is based on two parts: first, in the off-card part, a module called
DIFF generator computes the syntactic changes between the old and the new version of
the application and generates a patch. This patch is then sent on the card to perform the
second part of the system (on-card part) by modules implemented by extending the
Java Card virtual machine. Both Jvolve and EmbedDSU implement a mechanism to
detect SUPs. These points restrict the update so that no stack contains restricted methods.
A restricted method is an updated method or a method using instances from updated
classes. The main difference between Jvolve and EmbedDSU is that EmbedDSU requires
that no active method is on the stack to define safe points while Jvolve defines several
kinds of restricted methods. Principally, it distinguishes between methods to update and
methods that refer to updated classes. The system performs a return barrier on the first
category, i.e., it blocks all calls to this kind of restricted methods. It executes an on stack
replacement for the second category. This technique consists in a recompilation of
methods while they are being executed.

2.2.2 DSU for Java without VM support
DUSC (Orso et al., 2002) is a DSU system for Java applications based on proxy classes.
This technique rewrites first the application to make it updatable and then performs
dynamic class replacement during execution. The original class is rewritten to four
classes. The first is an implementation class that contains the implementation of each
version of the updated class. The second and the third classes are the wrapper class and
the interface class. The wrapper is used to provide the same interface to any client class
of the updated class. Each implementation class refers to other updatable classes through
their wrapper. The interface class is an abstract class that all implementation class extend.
The wrapper class uses interface classes to refer to each implementation class indirectly.
This way, all calls to a class are redirected to the current implementation. The fourth class
is called state class. It encodes the state of an instance of the implementation class, and is
used to transfer the state of existing instances to the new version when there is no active
method in the stack.

In de Pina et al. (2014), the authors present Rubah: a DSU system for Java. It requires
no changes to the JVM and works by bytecode rewriting for code update using an
existing rewriting tool. This enhances the portability of the system. The main novelty of
Rubah is related to data update. The authors propose two new algorithms to deal with
state transfer: a parallel state transformation algorithm and a lazy state transformation
algorithm. The first algorithm acts eagerly and uses the basic idea of starting from the
root references, and following each object reference transitively until all the program
state is visited and prepared to be transformed. The proposed algorithm performs using
multiple threads and this speed up the process. The second algorithm takes place while

 84 R. Lounas et al.

the program is running. The goal is to delay the transformation of each object to its first
use by the new version of the application. This solution uses proxies on objects in order
to inform the update process when the program uses an object (reads or writes in its
fields). The system considers that update points are chosen and inserted by the
programmer according to the semantics of the application.

2.2.3 DSU for C++ classes
In Hjálmtýsson and Gray (1998), the authors presented a system for DSU in connection
management services in telecommunication systems. The system is based on dynamic
classes to allow new functionalities to be introduced into a running C++ application. The
solution is implemented using proxy classes. Each dynamic class is written as two
separate parts: an abstract interface class and one or more implementation classes that
inherit from the interface. An implementation class corresponds to each version of the
class. Indirect method resolution is used to call the correct implementation using map that
associates the class name with the current implementation version. The method to update
objects is to consider that new objects are created with the new version and existing
objects continue with their current versions. Once the existing objects finish their tasks
they are destroyed. Specific methods allow an object to determine if its version is the
most recent version and provide to the programmer the possibility to migrate explicitly
objects.

2.3 Functional programming

Several works were published on dynamically update functional programs (Buisson and
Dagnat, 2010; Gilmore et al., 1997; Duggan, 2005).

2.3.1 ReCaml
The system ReCaml (Buisson and Dagnat, 2010) represents a new functional
programming language designed for manipulating execution states in a safe manner. The
system is built on top of a simply typed lambda-calculus and is considered as an
extension to the Caml byte code interpreter.

ReCaml allows active functions updating. The programmer annotates the code with
SUP. When an update is detected, the execution is restored to the closest annotation to
apply the update. The programmer provides functions to update program states
represented on the basis of the concept of continuations: an abstract representation of
program states that allows a prospective view of a program execution from a given point.
The manipulation of continuation is based on the definition of a new constructor for the
language. The constructor is a pattern matching operator that implements several policies
for update such as waiting the end of old versions of methods and version coexistence.

2.3.2 DynamicML
In Gilmore et al. (1997), the authors presented DynamicML, a system to support
Dynamic update for ML language. It extends the standard ML to support online update.
DynamicML is a statically typed language. To support the compiling time type checking,
DynamicML limits the changes allowed in a type. A type S1 can be replaced by a type S2

 Formal methods in dynamic software updating: a survey 85

only if S2 is a subtype of S1. The system allows the update of ML modules called
fonctors. The new version of a module is checked to have the same signature as the old
version and updates are restricted to abstract data types. DynamicML relies on SUP
searching and installation functions provided by the programmer to perform updates. The
presence of installation functions is checked at compilation time. The system uses a
rollback mechanism in the case of exceptions; the system is brought back to its initial
state. DynamicML poses restrictions on the expressivity of updates but allows to ensure
safety with concepts inherited from functional programming such as strong static typing.

2.4 Multi-threaded programming

Several studies explored the application of DSU techniques on multi-threaded programs
(we cite, Chen et al., 2007; Makris, 2009; Makris and Ryu, 2007; Neamtiu and Hicks,
2009).

2.4.1 POLUS
POLUS (Chen et al., 2007) implements DSU for multi-thread C programs. Data update
relies on a patch generation module to perform differences between the old and the new
version of a program. The patch contains code that maintains the coherence among the
threads. POLUS does not wait for SUP to perform updates; it uses an immediate update
based on the coexistence of old and new versions of code. Synchronisation functions are
used to maintain consistency among the different versions: when a dynamic update is
being applied, the patch injector write-protects both the old and the new versions of an
instance. This is performed by associating a signal handler to catch each write attempt to
either version of the instance. The signal handler invokes the corresponding state
synchronisation functions to transfer the modified state from one version to the other.

2.4.2 UpStare
The system UpStare (Makris, 2009) is a DSU system developed to support DSU in
C multi-threaded programs. It is composed of several modules: a compiler, a patch
generator and an update module. For code update, UpStare instruments the code while
compiling an application by inserting information needed for the update and uses
indirections in function calls. For data update, UpStare has an improved state
transformation technique that is able to update active functions at run-time. The
technique is called stack reconstruction meaning extracting the stack and reconstructing it
to be coherent with the new version. To our knowledge, it is the unique system to allow
stack reconstruction. To perform an update after detecting an update point, UpStare uses
a thread coordinator to apply an atomic update to all the threads concerned by the update
without causing incoherence of the system.

2.5 Component programming

Component programming was the subject of several DSU systems, like Noubissi et al.
(2010b), Solarski (2004), Panzica La Manna (2011), Chen and Huang (2009), Wahler and
Oriol (2014), Felser et al. (2007) and Liu and Tong (2011).

 86 R. Lounas et al.

2.5.1 DSU for FASA framework
A system for dynamic software update for automation systems is presented in Wahler and
Oriol (2014). The authors described a solution based on future automation system
architecture (FASA), a component-based software architecture and runtime platform for
real-time applications. First, the code of the new components needs to be loaded into
memory. The system configuration is then prepared by creating a new system
configuration, a clone of the active one. The proposed mechanisms consider the case of
state transfers that requires a significant amount of time. The proposed solution allows
FASA to distribute the state transfer between two components across multiple cycles.
This is implemented using a synchronisation mechanism that keeps track of state changes
and retransmits changed parts of the state. The system implements also a switchover
mechanism to ensure that all updates on all involved controllers become active at the
same time. Safety is ensured by a rollback mechanism to restore original configuration if
new components do not behave as expected.

2.5.2 DSU for OSGi
In Noubissi et al. (2010b), the authors proposed an approach for dynamic update in OSGI
inspired by their works on EmbedDSU (Noubissi, 2011; Noubissi et al., 2011). OSGi is a
platform to build Java applications from a number of modular, reusable and collaborative
components (called bundles), that can be dynamically reloaded (Miedes and
Muñoz-Escoi, 2012a). The proposition (Noubissi et al., 2010b) is based on the analysis of
bundles to prepare the update by comparing files and classes, generating a DIFF file
(difference between two versions of an application) and by including STFs. The update
module is structured as bundles. There is mainly two parts: the first is encapsulated in an
OSGi bundle and update services and the second is in the virtual machine and offers
functions of introspection, SUP detection and rollback mechanism. The state transfer is
done in two parts: architecture adaptation and interface adaptation. In Chen and Huang
(2009), the authors present two techniques. In the first one, the new service that has the
same name with the old one is required to register in the framework before update. The
new version is registered with a higher property so that it will be automatically chosen by
the client. A SUP is then indicated in order to perform state transfers correctly. The
second technique is based on the combination of runtime source compilation, class
reloading and the proxy design pattern. Once the changes in implementation classes are
detected, source code needs to be recompiled at runtime. The basic idea is to load the
dynamic service class using a dedicated class loader. A proxy design pattern is used to
replace the old service instances. A proxy class operates as a dynamic service class’s
access interface. It allows to invoke indirectly the dynamic service class by the service
objects so that when the dynamic service class reloads, the service objects continues to
use the same proxy instance to access new classes.

2.5.3 DSU for Distributed embedded systems
In Felser et al. (2007), the authors described an update infrastructure that allows dynamic
reprogramming of the network nodes based on the binary code of the application. The
update preparations are executed by a dedicated node called remote or manager node.
Then, the system constructs a fine-grained modularisation of the application to detect
dependencies between its elements. When the administrator changes a function, the

 Formal methods in dynamic software updating: a survey 87

system identifies which functions and data in the dependency graph are affected and
where these parts are installed in the network. This information represents the basis of
semi-automatic policies that are used to determine if the update operation can be
performed. The system creates and manages a memory image model that represents the
usage of the memory in the device. This memory model is initialised with the initial state
of the node and used for keeping track of the currently installed software layout. Based
on this information, the system determines a location where to put modified code on the
node.

2.5.4 DSU for internet of things
In Liu and Tong (2011), the authors present a framework for DSU to ensure high
availability in sensor data transmission and cooperation service for internet of things. The
authors suppose periodical execution of upgrades and define an update management
framework to manage sensor software according to work context containing work
environments and state. They set a generic update service pack between update
coordinator and sensors and propose three algorithms for update service pack for
improving service pack accessibility according to several scenarios given by the number
of sinks and sensors implied in the update. The framework uses replication of the original
version of a program which is held by an update coordinator. The replica becomes invalid
after the update is performed. Each sensor holds a table containing information about
updates times. This information is used in routing and synchronisation and ensures
consistency of the system.

2.6 Discussion

We classified in this section DSU systems according to paradigms of programming
languages through the description of representative systems from different application
areas. In literature, other classifications exist (Seifzadeh et al., 2013; Miedes and
Muñoz-Escoi, 2012b; Giuffrida and Tanenbaum, 2010). The classification according to
paradigms of programming languages is mainly motivated by the objective of our paper
which is to present a comprehensive survey on the use of formal methods to establish
DSU correctness. Indeed, it is established that the style of programming language is tiled
with the definition of correctness criteria. In Gupta (1994), the author studied three
programming paradigms (sequential, object oriented and distributed) and showed how the
definition of correctness criteria changes with the notions introduced by each paradigm.
In Murarka (2010), the author presented correctness criteria related principally to the
definition of SUPs and data update. They established different definitions for correctness
criteria according to the style of programming (sequential and multi-threaded). Detailed
definitions of DSU correctness criteria are the subject of the following section.

3 Correctness criteria for DSU

Ideally, in order to ensure DSU correctness, one wants to establish that the behaviour of
the application must be the same as the one that may be obtained by starting and running
the application once the updates have been applied statically. In Gupta (1994), Gupta
presented the first formal framework for DSU correctness. He studied several types of

 88 R. Lounas et al.

programming languages: sequential, object oriented and distributed. The author proved
the undecidability of the DSU validity. This means that given two versions P0 and P1 of
a program, a STF F and a state S, there are no algorithms to establish if the DSU with
these parameters is valid or not. Consequently, validity of an update is ensured by a set of
conditions that can be summarised by the fact that a modified procedure in the program
should be a functional enhancement of the old procedure with respect to the STF. A
procedure pc1 is a functional enhancement of pc0 if the process is in the same state in
both the following cases: procedure pc0 is executed in state S and after that the process is
updated, or, the process is updated in state S and after that procedure pc1 is executed.

For several authors (Murarka, 2010; Hayden et al., 2012; Zhang et al., 2012), these
conditions are too restrictive. Several studies presented formalisms to model DSU
systems and proposed other definitions of correctness. The next section presents more
details about works to formally model, define and establish correctness for DSU systems.
The application of formal methods in DSU leads generally to consider two aspects: the
definition of correctness criteria and the approaches used for formalisation. In this
section, we discuss correctness criteria for DSU. Formalisations techniques and
paradigms will be presented in Section 4. Two categories of properties are outlined in
research papers for DSU correctness. The first category regroups common properties that
are shared by all updates such as type safety and no crash. The second category refers to
specific properties related to the expression of the semantics of updated programs and
requirements.

3.1 Correctness based on common properties

3.1.1 Reachability
In Gupta (1994) and Gupta et al. (1996), the authors proposed a formal framework for
DSU modelling and define condition for its validity. The framework is based on the
notion of reachability. A process is defined as a code P0 and a state S changing with
transition function. A state S is reachable if and only if the execution of P0 from an initial
state leads to S in a time T. When updating, the behaviour of a process is changed from
P0 to P1. This change is modelled with a mapping function (or a STF). A change from
P0 to P1 at a time T is valid if after the change, the process leads to a reachable state of
P1. This means that the process behaves as if it executed P1 from scratch.

This validity property based on reachability suffers from the following drawback: it is
both too permissive and too restrictive. It is permissive (de Pina, 2016) because the
property allows a program to behave arbitrarily during a transition period after
performing a DSU. However, the new program must eventually behave as if it was
executed from the start. In Hayden (2012), the author exhibited an example that
illustrated how this property could be restrictive: he considers an update to a server
program that adds a limit to the maximum number of connected clients. Performing a
DSU to install the new version on a server that already has more connections than the
allowed limit raises a problem: allowing those clients to remain connected violates the
validity because the clients may remain connected for an indefinite amount of time. On
the other hand, terminating clients abruptly causes a loss in the program state which is not
allowed in DSU. These limits are principally related to the fact that reachability is
designed to target correctness in a general way. In research papers afterward, authors
defined correctness criteria for targeted aspects of DSU.

 Formal methods in dynamic software updating: a survey 89

3.1.2 Activeness safety
This property is related to update timing. It characterises SUPs and quiescent states by
ensuring that an update may be performed only if the functions [or components in
Buisson et al. (2016)] that are impacted by the update are not running (active). This
means that changed functions are not on the activation stack of a running program. This
is ensured by analysing the applications based on introspection of the running
environment to define SUPs (Noubissi et al., 2011; Lv et al., 2012; Hayden, 2012) or by
static analysis that examines the call graph of the old version.

Figure 2 An example of an updated code (see online version for colours)

Let us consider the example on (Figure 2). It illustrates the old version and the new
version of a program written in a c-like style. It represents a bill generation system. The
system reads first information related to the code, the unit price and the number of items
of a product. Then the functions tax1 and tax2 are called to calculate the taxes for the
product before calculating the final price (price function) which is summed at the end. If
the calculus performed by function tax1 is modified in the new version (line 15 of the
new version), then activeness safety property is ensured if the update is performed when
the function tax1 is not running. Activeness safety is a very popular property (Altekar
et al., 2005; Arnold and Frans, 2009; Felser et al., 2007; Noubissi et al., 2011) for the
identification of update points but it suffers from some limitations: multi threaded
programs and function that may contain long running loops cause the system to delay
update application for a considerable time. Besides, the authors in Subramanian et al.
(2009) showed that in some cases, this restriction may cause errors when a not updated
function calls an updated function. If the update occurs just at the beginning of the caller
and the updated method signature is updated, an error occurs.

 90 R. Lounas et al.

Research papers propose techniques such as loop extraction (Neamtiu et al., 2006) in
order to deal with long running loops in updated methods. The body of the loop is
extracted to its own function so that if an update changes the loop body, the extracted
function will be restricted for the update, and thus will ensure activeness safety, but the
update can happen after it returns. Other systems use return barrier technique to inform
the system every time an updated method returns and thus speeds up reaching a safe
point. Some research papers proposed techniques for stack replacement to update active
code (Subramanian et al., 2009; Makris, 2009). The following correctness criteria are
related to the case of systems that allow active code to be updated.

3.1.3 Con-freeness
In Stoyle et al. (2007), the authors defined correctness trough the notion of con-freeness.
This property expresses that the remaining code to be executed at an update point does
not make use of the format of an updated data. The framework distinguishes between
concrete and abstract use of a data type. The uses of the format of the data is called
concrete. It is abstract otherwise. For each update point and for all types that an update
changes, the program does not use these types concretely after an update point. Update
points are inferred by a static analysis. Expressions of type coersion are used to identify
concrete and abstract uses of data types in a program.

In the example on Figure 2, the function tax1 uses the format of the data tax(c)
representing a tax on a product represented by its code (c). The notation tax(c).a
expresses an access to the field a of the structure tax(c). If the programmer wants to
update the format of the data tax(c).a (for example, add another field) con-freeness
property is not satisfied at the line 6 because from this line, its format is used concretely.
Con-freeness is verified at line 7, because the use of the data tax(c) from this line does
not refer to its structure.

Con-freeness is less restrictive than activeness safety since it allows functions to be
updated while running but the limit of these criteria is that if update points are not
frequent enough, an update may be delayed for a long time.

3.1.4 Type safety
Type safety, studied in Chen et al. (2007), Buisson and Dagnat (2010) and Zhang et al.
(2012), means that functions of different versions can not refer to data of an inappropriate
types. This property is highly desired in DSU systems since it represents the corner stone
of several applications safety such as Java-based applications.

In Zhang et al. (2012), the difference is noted with type safety in programming
languages which means that a language is type safe if it prevents type errors. In DSU, if a
function f is defined as f(Aa)… in an old program, and if the new version brings changes
in the type A, then, after the update, when f is called, its argument must be of the new
version of the type A. In the example on Figure 2, the type of the third argument in the
function price is changed to float. In order to the updated code to be type safe, it must be
ensured that every call to the function uses the right type of the argument.

 Formal methods in dynamic software updating: a survey 91

3.1.5 Consistency
The problem of consistency is related to errors that may be introduced by the coexistence
of several versions of codes or data. In the literature, updating data is performed
according to different models. Figure 3 illustrates three models for data update
(Hjálmtýsson and Gray, 1998) in DSU. In the first model [part (a) on Figure 3], object
creation is blocked until all existing objects of older versions have expired. This solution
lacks the flexibility required by DSU systems. In the second model [part (b) on Figure 3],
the solution is to transform eagerly all existing objects of the old version to objects of the
new version. The third model [part (c) on Figure 3] considers that new objects are created
with the new version, and existing objects continue with their current version. Other
research papers consider an update model where the programmer has the possibility to
select objects to be transferred to the new version and objects that can continue to execute
with the old version (Murarka, 2010; Malabarba et al., 2000).

Figure 3 Models for data update (see online version for colours)

These models for data update require a careful definition of conditions to avoid the
manipulation of the wrong version of data by the program and thus ensure consistency. In
de Pina et al. (2014), the consistency is preserved through the definition of two conditions
based on the notion of safe to access objects. These objects are either up to date or a
proxies used by the garbage collector-like update algorithm. In Boyapati et al. (2003), the
authors used the notion of modularity conditions to ensure consistency. These conditions
define orders to the application of STFs with regard to the updated objects and links
between classes and the bodies of STFs.

Another aspect of consistency is related to code versions: in some cases, different
functions needs to be managed together to avoid errors. For example in Rinderle et al.
(2004), if the main loop of a program invokes an encode/decode function to encrypt send
messages over a connection at the beginning of each iteration and again invokes it to
decrypt receive-messages at the end of the iteration, updating of such function during the
main execution can cause the program to encrypt a message with one algorithm and
decrypt its result with another one. In the example on Figure 2, if the value of the tax on a
product changes between the two calls on lines 6 and 7, this mean that we consider
different information about the tax on the same product in a single price calculus. This
problem is called version inconsistency problem. The consistency is ensured generally

 92 R. Lounas et al.

with techniques such as function indirections (Stoyle, 2006), synchronisation (Neamtiu
and Hicks, 2009) and the definition of transaction blocks (Neamtiu et al., 2008).

3.1.6 No crash
A crash occurs when a piece of software stops performing the activities it has been
designed for. No crash property guarantees that any correct update must never cause
target systems to crash during and after the update. Since system crash in DSU can occur
for several reasons (de Pina, 2016) such as bad timing points, wrong expression of STF’s
or misbehaviour in updated code, this property is stated, in several research papers, on the
basis of other correctness criteria such as consistency, safe update timing. Some research
papers express no crash property on the basis of patches verification (Noubissi, 2011) and
system verification (Zhang et al., 2012).

3.1.7 Deadlock free
Deadlock occurs when a program can never proceed. Concurrent programs sometimes
include instructions for blocking to eliminate data races or communication errors.
Deadlock happens when two processes sharing the same resource prevent each other
from accessing the resource. In the application of DSU in concurrent programs,
programmers ensure that they do not insert blocking update calls (UCs) that can lead to
deadlock. Figure 4 illustrates a deadlock scenario: the thread T2 owns a lock on the
thread T1. An UC is inserted just after the lock. Due to this blocking UC, the unlock
instruction will not be executed. The thread T1 will be locked at the wait instruction and
will not reach the UC point.

In Lounas et al. (2017b), the authors propose solutions to tackle deadlock situations
by improving UCs to ensure that threads do not hold a lock while waiting for the update.
This property is also guaranteed in Anderson and Rathke (2012) by using type analysis
and in Murarka and Bellur (2008) by using analysis of parallel execution and inter
procedural call graphs.

Figure 4 A deadlock scenario (see online version for colours)

3.1.8 Updatability
This property is related to update timing. In order to define SUPs, systems rely
principally on two major approaches. The first approach relies on techniques that perform

 Formal methods in dynamic software updating: a survey 93

SUPs before the update. Update points are inserted in the program as annotations or as
procedure calls. These points are inferred by a static analysis of the program. In the
second approach when an update is detected, the introspection mechanisms are activated
to detect if the application is in a quiescent state to launch the update. If not, DSU
systems activate mechanisms that bring the application to SUPs.

Updatability means that once an update request is made, old system must eventually
reach an updatable state (Zhang et al., 2015). It is a temporal property which ensures that
the application reaches update points or that the update mechanism brings the system to
update points that satisfy properties defined by the user.

3.2 Correctness based on specific properties

We discuss in this subsection the use of specific properties for DSU correctness. This
kind of properties, also called behavioural or semantical properties, requires writing
formal specifications of the programs and the changes in the desired behaviour.

In Charlton et al. (2011) and Lounas et al. (2015), the desired properties are expressed
within the updated code using Hoare Logic (HL) style (Hoare, 1969) by writing
preconditions, post-conditions and assertions of the desired behaviour within the code.
The system computes proof obligations that are discharged by theorem proving. In
Murarka (2010), the author proposed a system for DSU that allows writing user
specifications within a patch. The user writes specifications according to concepts of
tasks and activities and by choosing, for particular parts of a program, behaviours defined
by the framework (offline, isolate, adapt and mutate). These behaviours control the way
the update is applied. For example, choosing an offline behaviour means that all task
instances started till a specified time t execute using the old program and all task
instances started after the time t execute using the new program. The user chooses also
the behaviour of the program by selecting updates on tasks and activities. The system
analyses the patch and computes update points that guarantee safety conditions to apply
the update. In Anderson (2013), the behavioural properties are expressed in a type system
extended with effects. The effects allow to express the desired properties and keep track
on the evolution of the system behaviour from the initial configuration to the desired
specification by defining operations to evaluate the differences between effects of the
initial version and the following versions. In Zhang et al. (2013), the authors presented a
framework that allows the expression of behavioural properties of dynamic updating
models. The behaviour of updated systems is expressed whether by using linear temporal
logic formulas (LTL) or through algebraic sorts. These notions will be detailed in the
following section.

3.3 Discussion

DSU mechanisms represent a response to the growing need of high availability, but one
must ensure that these updates should not cause the running system to be shut down or
performing erroneous behaviour. The system should verify DSU correctness criteria to
rule out system crash, avoid deadlock situations and errors in updating semantics, data
and timing which expose it to vulnerabilities. For example, several applications build
their protection policies on type safety. In Java applications type checks act like security
protection for permissions to information. Malicious code can exploit DSU mechanisms

 94 R. Lounas et al.

to bypass existing security mechanism to perform forbidden actions and access illicitly
sensitive data. Introducing DSU in these applications implies to ensure well typed actions
and to preserve confidentiality of information. The behaviour of the update is another
example, indeed, we would like to be sure that the update does not introduce code that
alter data and functions in order to corrupt the use of the system. Expressing the
semantical properties of the update and the program after the update ensures the integrity
of the applications. We summarise and classify in Table 1 DSU researches on correctness
properties according to the style of programming language and outline the applications
area where they are required. The next section presents the use of formal techniques and
approaches to establish correctness criteria.
Table 1 Correctness properties in different programming paradigms and application areas

Paradigms Properties Application area
Sequential • Type safety: Neamtiu et al. (2006); Hicks

(2001); Zhang et al. (2012); Stoyle
(2006); Bierman et al. (2003).

• Consistency: Frieder and Segal (1991);
Lee (1983); Zhang et al. (2012); Stoyle
(2006); Hashimoto (2007); Qiang et al.
(2016); Giuffrida and Tanenbaum (2013).

• Semantical correctness: Hayden et al.
(2012); Altekar et al. (2005); Hashimoto
(2007).

• Reacheability: Gupta (1994); Gupta et al.
(1996); Stoyle et al. (2007).

• No crash: Zhang et al. (2012); Stoyle
(2006).

• Activeness safety: Noubissi et al. (2011);
Arnold and Frans (2009); Hayden (2012).

• Con-freeness: Stoyle et al. (2007).

• General: Altekar et al.
(2005); Lee (1983); Hicks
(2001); Neamtiu et al.
(2006); Gupta (1994);
Hayden et al. (2012);
Zhang et al. (2012); Gupta
et al. (1996); Stoyle et al.
(2007); Stoyle (2006);
Hayden (2012); Bierman
et al. (2003); Hashimoto
(2007).

• Distributed systems:
Frieder and Segal (1991).

• Operating systems: Arnold
and Frans (2009); Giuffrida
and Tanenbaum (2013).

• Cloud computing: Qiang
et al. (2016).

Object oriented • Type safety: Malabarba et al. (2000);
Hjálmtýsson and Gray (1998); Orso et al.
(2002); Subramanian et al. (2009);
Boyapati et al. (2003).

• Consistency: Noubissi et al. (2011);
Baumann et al. (2005); Hjálmtýsson and
Gray (1998); Makris and Ryu (2007);
Murarka and Bellur (2008); Murarka et
al. (2006); de Pina et al. (2014).

• Con-freeness: Lv et al. (2012).
• Deadlock free: Murarka and Bellur

(2008); Lounas et al. (2017b).
• Activeness safety: Lv et al. (2012);

Subramanian et al. (2009); Lounas et al.
(2017b).

• Updatability: Lounas et al. (2017b);
Zhang et al. (2015).

• General: Malabarba et al.
(2000); Subramanian et al.
(2009); Murarka and Bellur
(2008); Boyapati et al.
(2003).

• Operating systems:
Baumann et al. (2005);
Makris and Ryu (2007).

• Embedded systems:
Noubissi et al. (2011); Lv
et al. (2012); Lounas et al.
(2017b).

• Low level networking:
Hjálmtýsson and Gray
(1998).

 Formal methods in dynamic software updating: a survey 95

Table 1 Correctness properties in different programming paradigms and application areas
(continued)

Paradigms Properties Application area
Functional • Type safety: Gilmore et al. (1997);

Duggan (2005); Buisson and Dagnat
(2010).

• Consistency: Gilmore et al. (1997).

• General: Gilmore et al.
(1997); Duggan (2005);
Buisson and Dagnat (2010).

Multi-threaded • Type safety: Makris (2009); Neamtiu and
Hicks (2009); Anderson (2013).

• Consistency: Makris (2009); Chen et al.
(2007); Neamtiu and Hicks (2009);
Murarka and Bellur (2008).

• No crash: Chen et al. (2007).
• Deadlock free: Anderson (2013);

Murarka and Bellur (2008); Anderson
and Rathke (2012).

• Semantical correctness: Anderson
(2013); Anderson and Rathke (2012,
2009).

• General: Makris (2009);
Chen et al. (2007); Neamtiu
and Hicks (2009);
Anderson and Rathke
(2012); Anderson (2013);
Murarka and Bellur (2008).

Component • Type safety: Chen and Huang (2009);
Chen et al. (2010).

• Consistency: Noubissi et al. (2010);
Solarski (2004); Panzica La Manna
(2011); Wahler and Oriol (2014).

• Semantical correctness: Panzica La
Manna (2011); Chen et al. (2010); Wu
et al. (2008).

• No crash: Wahler and Oriol (2014).
• Activeness safety: Felser et al. (2007).

• General: Chen and Huang
(2009); Wu et al. (2008).

• Service oriented
applications: Chen et al.
(2010).

• Distributed embedded
systems: Felser et al.
(2007).

• Telecommunication
systems: Solarski (2004).

• Automation systems:
Wahler and Oriol (2014).

• Distributed systems:
Panzica La Manna (2011).

4 Approaches for formalisation in DSU

According to the level of formalisation, we distinguish four categories in the applications
of formal methods in DSU. These categories fit in Rushby’s classification of formal
methods into four levels of rigor (Rushby, 1997) classified from lowest to the highest
level of rigor:

• Level 0: this level corresponds to the absence of formal methods but formalisation
can exist in development process. The validation is based on testing.

• Level 1: this level corresponds to the use of concepts and notations from logic and
mathematics such as set theory and functions (Hicks, 2001; Bierman et al., 2003),

 96 R. Lounas et al.

type systems (Altekar et al., 2005; Neamtiu et al., 2006; Boyapati et al., 2003) and
control flow graphs (Murarka, 2010).

• Level 2: the methods of this level uses formalised specification languages with some
mechanised supporting tools like type checkers or model checkers (Lee, 1983;
Hayden et al., 2012; Chen et al., 2010; Stoyle, 2006; Wu et al., 2008).

• Level 3: this level represents research works that use specification language with a
corresponding formal proof method. Proof methods are mechanised by a proof
checker or a proof assistant (Buisson and Dagnat, 2010; Zhang et al., 2012).

Techniques from level 0 are out of the scope of this survey. These techniques have been
surveyed in Seifzadeh et al. (2013) and Miedes and Muñoz-Escoi (2012b). Research
works adapted formal techniques and used several formal approaches to specify different
entities in DSU: the updated system, the update mechanism, the update itself and the
desired properties. The notion of paradigm refers to the approach that expresses the
specifications, the way that concerned elements and properties are expressed. We use the
notion of technique to explain the way that the property is established.

4.1 Formal techniques in DSU

The effort to ensure DSU correctness leads to the use of a variety of techniques from
different formal levels. We review in this subsection the principles of these techniques.
The use of these techniques in formal approaches to establish correctness criteria is
illustrated by Table 2.

4.1.1 Theorem proving
This technique (Bertot and Castéran, 2013) consists in specifying a program by the means
of inductive properties satisfying verification conditions. Basically, properties of interest
have the form of predicates that are proved using properties of the system and the rules
and axioms of the theory used. The theorem-prover basically automates the
demonstration (theorem prover) or checks the demonstration (proof checker). In some
cases, due to the undecidability issue, the systems need guidance to fully discharge the
proof (proof assistant).

4.1.2 Model checking
Model checking (Baier and Katoen, 2008) is a technique for the verification of finite state
systems typically modelled by automata. The expected properties of the model are
expressed by temporal logic formulas. Efficient symbolic algorithms are used to explore
the model to verify if all possible configurations validate those properties. If a property is
not verified, a counterexample is exhibited.

4.1.3 Static analysis
Static code analysis (Silva et al., 2008) is the analysis of computer software which is
performed to collect some information about the behaviour of a system without executing
it. This technique provides assistance and computing relevant information from a
program to help developers to understand their programs and correct mistakes. There are

 Formal methods in dynamic software updating: a survey 97

different forms of static analysis such as dataflow analysis, constraint-based analysis,
type analysis and abstract interpretation.

4.1.4 Program annotation
Annotation (Hoare, 1969) consists in writing within the code the conditions that should
be met before the annotated code is executed, as well as describing the logical state of the
program after its execution. The logical formalisms underlying this approach are program
logics like HL. A verification condition generator is used to produce a set of logical
formulas that must be proved to ensure the correctness of the program with regard to the
annotations.

4.1.5 Refinement
Refinement (Potet and Rouzaud, 1998) is the technique that synthesizes a program from a
specification step by step. Each step increases the degree of precision with respect to the
initial specification and introduces implementation details, such as the choice of
algorithm for implementing a given function, or the choice of a concrete data type. Every
step generates a number of refinement proof obligations that must be discharged to obtain
a final program that has the same properties as the original specification.

4.1.6 Rewriting
Rewriting systems (Dershowitz and Jouannaud, 1990) are directed equations used to
compute by repeatedly replacing sub-terms of a given formula with equal terms until the
simplest possible form is obtained. This kind of transformation steps have applications in
many areas such as specification and verification in software engineering, functional
programming and computer algebra. In this technique, the system and its operations are
represented by equations and rewriting rules and the properties are written in an
equational form. The program satisfies the properties if they are deduced from the
specification of the program by applying rewriting rules.

4.1.7 Bisimulation
Bisimulation (Sangiorgi, 2009) is a technique intended to characterize state equivalences
and process equivalences in labelled state transition (LTS). A binary relation R(pRq) over
an LTS is a bisimulation if for all state p′ with p →u p, it exists q′ with q →u q and (pRq)
and if for all state q′ with q →u q, it exists p′ with p →u p and (qRp), where u represents
an action that brings the state p to p′ (resp. q to q′). Bisimilarity is the union of all
bisimulations. It offers a technique to prove process equivalences with two manners: state
a relation R and prove that it is a bisimulation or construct R to establish the bisimulation
between two processes.

4.2 Formal approaches in DSU

In order to ensure DSU correctness, research papers explored several formalisations
approaches. In this subsection, we propose a classification of these works according to
the paradigm of formalisation. This classification is motivated by our interest to explain

 98 R. Lounas et al.

the basic ideas and concepts of formalisms and to show how they are exploited to
formalise DSU and correctness criteria.

4.2.1 Algebraic formalism
This formalism relies on the modelisation of systems as many-sorted algebra consisting
of a collection of data, typed operations which are specified on the basis of axioms.

In Zhang et al. (2012), the authors presented an algebraic framework for specification
and verification of DSU systems based on the mechanism of POLUS (Chen et al., 2007).
The main idea is to express a DSU system as a rewriting system in which one can verify
properties and check incorrect DSU updates. Three distinct parts are formalised:

1 The programs in term of sort and operations.

2 The update mechanism as a rewriting system.

3 The patch that contains: added (deleted) variables and functions; states
synchronisation and indirection functions.

The authors defined the following main notions for program formalisation:

• The sorts for sets of functions Set{F} and instructions List{S}.

• The sorts for expressions (E) and programs (P).

• The operator for program constructor: Pg: Set{F} * List{S} → P.

• The sorts to represent threads, thread identifiers, and stack calls.

Patches are formalised using the following sort: Set{F} * Map{F, F} * Map{F, V} *
Map{V, V} → H, where Map{F, F} is a map from old versions of functions to new
versions, Map{F, V} is a mapping from functions to used variables, and Map{V, V} is a
mapping from old variables to new variables. The symbol H represents a constructed
patch.

The authors define then a rewriting system on programs configurations. For every
instruction or update instruction, the rewriting system formalises how the configurations
change. Four states are identified for updates: BfUpdate, Updating, Done and Abort.
They represent respectively states: before the update, while updating, a finished update,
and an interrupted update. The following formula (1) represents the rewriting rule for
update initialisation. It expresses that the program P passes from the bfUpdate state to
updating by the initialisation of memory storage M with information of the patch H. C
represents the threads stacks.

, , , , , , (,), ,< >< >bfUpdate P M C H updating P init M H C H (1)

This work focuses on two types of correctness: common property (such as consistency
and no crash) and correctness based on properties defined by the user. Correctness
criteria are formalised as predicates on configurations. The following formula is the
specification for the no crash property:

?(, , , ,) ,< > = =isAbort U P M C H true if U abort false otherwise (2)

If the application of rewriting rules, using the system sorts and operations, leads to true
then the criteria is established. The process of verification is based on three parts: choose

 Formal methods in dynamic software updating: a survey 99

an initial configuration, formalise properties and then verify. The formalisation is done
within the Cafeobj method (Ogata and Futatsugi, 2003). This method allows to specify
systems as observational transition systems (OTS). Then, the OTS are tailored to be
specified in algebraic formalism as equational theory. This representation leads to
formulas that are verified using theorem proving or model checking (Zhang et al., 2013,
2014).

In Chen et al. (2010), the presented framework implements dynamic service update
on a service-oriented application on top of OSGi. The process of dynamic service update
is formalised using the process algebra language finite state process (FSP). The authors
defined the elements of the system including the update modules as FSP processes. They
identify mainly the following processes:

• Client and server processes: they represent the modules of the updated system.

• Updatemanager and StateTransfert: these processes represent modules to
respectively simulate an administrator to control the update sequence and to state
transfer from the old version to the new state.

• CurrentService (Cs) and NewService (Ns) to represent the implementations of the old
and new version of an updated service.

• Service interface and delegate: these processes are used to respectively define the
service’s public methods and to coordinate interactions between the service interface
and its service implementations.

Figure 5 An example for FSP formalisation

1. Client = (client.send → client.receive → Client).
2. Server = (server.receive → server.send → Server).
3. StateT ransfer = (cS.getstate → nS.setstate → StateTransfer).
4. UpdateManager = (update.start → cS.block →

nS.start → ns.run → cS.stop → update.end → END.
5. Server_interface = (Server) @ {server.receive, server.send}.
6. property ClientTrans = (server.receive → server.send → ClientTrans).
7. Check_tran = (Server || ClientT rans).

Methods of the different components are modelled as FSP actions. Both processes and
actions use FSP operators to describe different functionalities. An extract of the
formalisation is shown on Figure 5. The first four lines represent the specification of
these processes: Client, Server, Updatemanager and StateTransfer. For every process P,
the expression P.a represents an action a of the process. The notation (→) in FSP
represents the prefix operator: a description (a → P) represents a process that initially
engages in an action a, and then behaves exactly as described by P. Line 5 represents the
server interface. It expresses, using the operator hide (@), that all behaviour except send
and receive are hidden from the user. The authors ensure that the framework achieves
deadlock freedom, type safety and behavioural correctness. The line 6 of the extract
represents the property of transparency for the client. The property expresses that the
client only sees the behaviour of sending messages and receiving messages from the

 100 R. Lounas et al.

server. In line 7, the expression of the property is composed using the operator (||) with
the server behaviour to check if it is verified by the system.

The properties are expressed using fluent LTL and verified using the model checker
labelled transition system analyser (LTSA).

4.2.2 Functional formalism and type systems
In this paradigm, we analyse the use of lambda-calculus and functional modelling to
reason formally on DSU systems.

The research in Bierman et al. (2003) proposed a formal framework for specification
and reasoning on DSU based on a typed lambda-calculus. The authors introduce the
update-calculus, an extension of lambda-calculus to support update. The framework is
flexible, simple and extensible. The framework considers a program as a set of modules
and an expression to evaluate. The expressions are represented by standard constructors
(for instance: projection, application and let … in). Each module declaration has the form
module Mn = m, where M is a module name, n is a version number, and m is a module
body. An update primitive is introduced to load new versions of modules. The obtained
update-calculus allows to update any module, including changes to types and their
definitions. The calculus is based on a type system which guarantees that updates do not
alter the type safety of a program.

The semantics is defined by giving a set of reduction rules to evaluate expressions in
their context. Updates are correct as long as the updated program is able to apply any
reduction rule after the update since the type system accepts only updates that are correct.
If an expression for loading an update module M is to be evaluated, the system verifies if
the new module does not invalidate the type safety of the program, and if the number
version of the module is greater than any existing version of M, the new module is added
then to the set of modules. The authors presented a concrete example of a server with a
standard loop for getting and handling events. The update operation is represented as an
event. When it occurs, the system calls a special update handler which applies the
defined semantics to load new functionalities, to redirect to new versions of functions and
to initialise data.

The authors presented in Stoyle et al. (2007) a program calculus that supports DSU
on procedural, C-like languages. The framework is called Proteus. It is an extension of
the update-calculus: the authors developed the possibility of inserting update points
within the program to ensure con-freeness property, presented in Subsection 3.1.3. The
limitations of con-freeness due to update postpones are addressed in other publications
(Stoyle, 2006; Neamtiu et al., 2008): the authors propose Proteus-tx, an extension of
Proteus which considers that updatable programs are structured around transactions and it
proposes transactional version consistency (TVC) property for correctness. This property
is used to deal with inconsistencies raised by multiple versions. They propose to
distinguish functions that can be updated in mid-transaction without violating TVC and to
reduce limitations related to timing. This is performed by extending a standard type
system with effects to capture contextual effects of updates by expressing precisely the
effect returned by the computation that has already occurred (the prior effect) and the
effect of the computation that will take place (the future effect). These effects are used to
ensure TVC in multi-threaded programs.

In Anderson (2013), the authors presented a framework for the use of formal methods
to specify and reason about DSU in multi threaded programs. The framework is based on

 Formal methods in dynamic software updating: a survey 101

a type system with effects. The idea behind this work is that the safety of an update
depends on a state characterised by the code and the shared resources, which is the key
difference with (Neamtiu et al., 2008) who reasoned about transactions. The considered
language is a simple lambda-calculus with primitives to handle explicitly resources
access and update points.

The type system ensures that the modified system will be well typed and behave as
expected by keeping track of the effect of each update operation. The formalism includes
a notion of world constraints to keep the difference between the effect of an update
operation and the expected specification of an update (prior effects and modified effects).
The main properties established are consistency of the update system by subject
reduction, i.e., every reduction (except update reduction) preserves the effect and an
update reduction leads to the desired effect. These principles are used by the author to
establish deadlock free and type safety on concurrent programs (Anderson and Rathke,
2009) and message passing programs (Anderson and Rathke, 2012).

In Hashimoto (2007), the author presented a method to ensure behavioural safety
based on the definition of a set of SUPs. The author models first safe runtime code update
with a variant of high-order call-by-value language. In this language, a program is
modelled as a labelled lambda-expression; and a labelled tree is then constructed for a
program. The notion of code mapping is then introduced to identify point-wise
correspondence between program P0 and its revision P1 which is used to extract
(calculate) the modified tree nodes representing deleted, changed or inserted code in the
labelled tree representing P0. The model precisely tracks the effect of update by defining
an exact update model. This model makes use of explicit flow and dependency
information which have been extracted from the labelled trees and modified tree nodes.
The exact model uses information from execution traces about: the affected nodes, used
values and state match operation to compute SUPs where no dependence on modified
code exists and no affected values have subsequent critical uses. The model is then
approximated by abstract interpretation of the semantics to derive a realistic set of SUPs.
The program itself is used to obtain valid state transformers by reusing the computation
of the initial program P0.

In Buisson et al. (2016), the authors proposed a formal framework based on Coq
proof assistant, which is based on a typed lambda-calculus, to establish DSU correctness
for a component model based on python language called Pycots. The formal framework
consists on an abstract model called Coqcots that allows proving properties on
architectures or on manipulating architectures. The two models are used in an approach
that ensures the construction of correct updates of the components. First, the current
architecture of the target software is extracted using Pycots platform. The result is a Coq
module containing a Coqcots architecture. The designer defines the reconfiguration and
build the proof of its correctness within Coq. This is based on the formal definition of
primitive reconfiguration operations such as create to add a new component and hotswap
to change the behaviour of an existing component. This leads to proofs related to
operations and preservation of architectural constraints. A reconfiguration script is then
extracted using an extension of the Coq extraction mechanism to target Python language.
The script is sent to the Pytcots manager after being improved with by the programmer
with glue code such as concrete Python objects. At the reception of the script, the
manager applies it to the target software system.

 102 R. Lounas et al.

4.2.3 State-transition paradigm
This formalism refers to the use of states and transition rules to describe systems.

In Hayden et al. (2012), the authors proposed a framework for formal verification of
DSU for C-like programs. They first give an approach to write specifications categorised
in three types:

1 backward-compatible specifications which are verified in both new and old version

2 post-update specifications which concern only the new version

3 conformable specifications expressing changes to conform existing features to the
new version.

They define then a formal transformation of the specifications to conform them to the
update.

A program is represented by a triple < p, σ, e> where p is the code, σ is the heap and e
an expression to execute. The expression e represents either standard expressions or
events defined by the programmer such as update event. The formal semantics expresses
that if an update occurs, the configuration is changed to <pπ; σ; (eπ; 1)> where π = (pπ, eπ)
represents the patch consisting of the new program code (including unmodified
functions) and an expression eπ that transforms the current heap as necessary. The
integer 1 is used to indicate that an update occurred.

The verification is based on another transformation called program merging. This
transformation takes a configuration of the old program and a patch and produces a
configuration of a new program. The merge transformer contains transformation rules for
both code and specifications written within the code. A proof that the obtained program is
equivalent to the original program with the patch (a new code with a STF) is done by
bisimulation. They proved that the program obtained by the merge transformation
simulates every execution step in the old program with the update from the old to the new
version, and that for every trace in the merged program, there is a corresponding trace in
the old program with the patch. The authors used a tool (Otter) for symbolic execution
and a tool for verification (Thor).

In Wu et al. (2008), the authors presented an abstract state machine (ASM)-based
high level semantical model for service-oriented systems using the OSGi framework. The
modelled architecture is based on the coordinator bundle agents responsible of update
coordination and the functional bundle agents responsible for the tasks of the application.
In order to capture the requirements of both agents, ground models are specified for both
of them.

Ground models are based on the definition of states, behaviours and conditions. For
instance, the states of the ground model of a coordinator bundle agent are in the set: {Init,
waiting for update, prepare updating, update monitoring, exit}. They represent
respectively the initial state; the stage of waiting updating; the stage of pre-updating with
information collection about the program state; the stage at which updating is running
and the coordinator bundle agent monitor the procedure and the final state.

The ground model represents an abstraction of the system. Its formalisation is based
on the concepts of universes, signatures and behaviours. Universes represent the
manipulated data (for example: universe of applications, universe of bundles, universe of
services, universe of versions …). Signatures represent types of operations. For example,
the expression updating: service → boolean, is used to indicate whether the service is

 Formal methods in dynamic software updating: a survey 103

updating or not. The behaviours are expressed as formal rules to capture system
functionalities. For example, in order to choose the right moment for updating, a formal
rule is specified to express that the moment to update a bundle is when no other bundles
depend on it. The specification of ground models is refined to a concrete representation.
The defined rules are used in refinements to ensure the correctness of the update such as
updating order, selection of updating moment, dependencies and service compatibility.
The verification of the framework is performed within the model checker SMV.

In Zhang et al. (2015), the authors presented a formal framework based on state
machines formalism to model dynamic software updates and use the formal model to
identify SUPs. The approach determines update points that satisfy properties required by
the updates on both the new and the old version of the program. The properties are
expressed using temporal linear logic (LTL) and the verification is done with model
checking. If counterexamples are found, the corresponding states are excluded and model
checking is run again. The process is iterated until all desired properties are successfully
verified.

The authors studied the case of a RaiCab system. Autonomous vehicles establish
connections with a device called controller in order to pass a crossing. The authors
propose to add a feature to the system. The desired feature states that when that vehicle
approaches the crossing, it must send a message check to the controller so that it must
receive two messages from the controller to enter the crossing instead of one message in
the first version of the system. They studied two properties related to the behaviour of the
system: crossing property and passability. The first property says that if the RaiCab is in
a no return (noRet) section, then the gate must be closed. The second property expresses
that if the gate opens, and the RaiCab did not pass yet, it must finally reach a no return
section. The following LTL formulas represent respectively the properties:

()≡ →crossing noRet gateClose (3)

≡ ∧ ¬ → passability gateOpen passed noRet (4)

The symbols □ and ◊ are temporal operators globally (always) and eventually. To apply
the proposed methodology, the authors considered that initially, all states of the systems
can be considered as safe to perform the update. By applying the proposed algorithm,
model checking revealed counterexamples that violate these properties. The states in
which the violation occurs are removed from the set of SUPs. Finally, they obtain safe
points that always satisfy both the properties. The authors studied also updatability of the
system. The formalisations and verification are performed within the Maude system
(Maude, 2017).

4.2.4 Axiomatic formalism
The axiomatic paradigm belongs to the category of works that aim to establish formally
behavioural properties. The basis of this family is an extension of HL (Hoare, 1969).

In Lounas et al. (2015), the authors described a method to establish the equivalence
between specifications desired by the programmer for the new version of an updated
program and specifications that are performed actually by the DSU system. The
considered DSU system is dedicated to Java Card applications. The authors established
code update semantical correctness at bytecode level. The specification of the update is
contained in a patch obtained by a module which compares the old and the new version

 104 R. Lounas et al.

of a class. The application of the updates is expressed as annotations. An annotation
module produces an update-annotated program. Figure 6 illustrates an example (Lounas
et al., 2015) of the application of the content of a patch to a program bytecode. The
bytecode represents a function computing the sum of two integers. First, it initialises the
arguments and loads them (iload instructions) then the sum operation is performed
(iadd). The result is then stored. The function is supposed to be updated to perform a
substraction. The patch expresses that to perform the update, the instruction at program
counter (line) 4 is deleted Del @ 4 and a substraction instruction is inserted instead isub
at pc 4. The information about update are inserted as special comments on the annotated
bytecode.

The authors present a predicate transformation calculus to derive the specification of
the updated code [weakest precondition (WP) calculus]. WP calculus is based on Hoare
triples. A program S specified by its precondition P and its post condition Q represents a
triple {P}S{Q}. The WP calculus is used to derive precondition given a program and its
post-condition. The authors extend the calculus to include update operations inserted as
annotations. The obtained specification is then matched with the specification desired by
the programmer. The equivalence of specification obtained by predicate transformation
and the specification initially written by the programmer, using theorem proving, leads to
state update correctness.

In Charlton et al. (2011), the authors proposed an extension of HL to reason about
DSU on imperative languages and establish behavioural properties. The approach is
based on the definition of an imperative language with features for memory allocation:
the procedures are stored within the heap. An assertion language is then defined to extend
HL in a way that keeps track of the code specification and memory access. Specifications
are written as special comments within the updated code. The author revisited the
example studied in Bierman et al. (2003). The web server code example is modelled in
the imperative language and then annotated using the assertion language with
specifications and properties to verify in terms of pre and post conditions.
Demonstrations are performed within the tool Crowfoot.

Figure 6 An example of an annotated code (see online version for colours)

4.2.5 Graph-based modelisation
Researches of this category use graph-based representations of the systems, and build
theories upon this modelisation to derive correctness properties.

 Formal methods in dynamic software updating: a survey 105

In Murarka (2010) and Murarka and Bellur (2008), the authors present a formal
framework for DSU correctness for multi threaded and object oriented programs. They
built formalism upon graph-based modelisation in order to state theorems that ensure
correct DSU by determining SUPs and performing update schedules.

The authors used flow graphs and inter-procedural flow graphs (IFG). The flow
graphs are used to represent control among the statements of methods and activities. IFG
represent the control flow in a program: the flow of control within the methods and the
flow of control across the methods. These graphs are used to compute execution points
and to deduce SUPs and update schedules. In order to represent the interthread
dependencies in a program, the authors used a parallel execution graph (PEG). This
representation uses different edges for notification and synchronisation between threads
and allows to state sufficient conditions that an update must satisfy to avoid deadlock
situations. After the insertion of blocking UCs, a blocking state graph (BSG) is used for
checking the feasibility of updates and to compute update schedules.

The authors studied also consistency of updates. They proposed several models for
data update (by applying STFs) and program activities. The consistency is based on the
notion of compatibility: every objects is compatible with the old version or compatible
with the new version. According to this classification, several cases are considered, for
instance, an object may be created by an old version but is compatible for use by the new
version (backward-state compatible objects) or an object created by the new version can
be used by the old version (forward-state compatible objects). Correctness conditions are
then stated for both old version and new version of the program. In order to reach a
consistent updated program, every request must either ensure conditions over the old
version or over the new version.

Graph-based representation is used (Murarka et al., 2006) in order to ensure the
consistency related to function versions. The main idea is to isolate some methods from
the process update. These methods called encapsulated methods are used to represent
atomic actions. An update dependency graphs (UDG) is used to define correct update
sequences that preserve the isolation and determine the order in updating classes. This
same idea was used by Lee (1983) to ensure update consistency.

4.3 Trends in formalisation

We presented in this section formal techniques and formalisms used to establish
correctness in DSU systems. Table 2 shows the classification of research papers
according to formalisms and techniques used to establish correctness properties. The goal
of Table 2 is to outline for every correctness criteria the formalism used to its
specification and the way it is established.

Some facts are pointed out from the table with regard to correctness criteria. The first
fact is that some formalisms are used exclusively to one criteria, for example, axiomatic
formalism is used exclusively to specify semantical correctness. The table outline also
that there are several ways to establish one correctness criteria. For instance, consistency
is formalised in four formal paradigmes (algebraic, functional, state transition and
graphs) and it is verified using two techniques: theorem proving and static analysis.
These two techniques belong to different levels of rigor.

The study of formal specification and verification of DSU correctness leads us to the
following observation: the application of formal methods in DSU can be categorised into

 106 R. Lounas et al.

two levels: abstract or design level and code level. Code level refers to criteria such as
type safety and version consistency (Stoyle et al., 2007; Neamtiu et al., 2008; Lounas
et al., 2015; Hayden et al., 2012). The second category relates to the application of formal
methods when designing DSU systems. Abstract level approaches (Zhang et al., 2014,
2015; Wu et al., 2008; Murarka and Bellur, 2008; An et al., 2015) ensure system
properties such as deadlock free. This is performed by specifying abstract behaviours for
the system. The specified properties are related for example to update operations order or
interactions with the application environment (An et al., 2015). We note that formal
methods may be suitable for one or both levels. For example, formalisms based on state
transition paradigm with refinement techniques are suitable to the application of formal
methods at the earliest stage of the development process and thus are suitable for the
design level whereas annotation is suitable for the code level. Some formal approaches
are used in both levels. For instance, model checking is used to design correct updates in
(Zhang et al., 2015) and it is used in Lounas et al. (2017b) at code level to the same
property (updatability).

Finally, Table 2 may suggest the choice of a formal method or the choice of a higher
level of formalisation. For example, researches analogous to Hayden et al. (2012) and Wu
et al. (2008) may use model checking to automatically establish correctness of semantical
properties. Researches using functional formalism may use theorem proving to establish
type safety and semantical correctness.

5 Discussion

The use of formal methods in DSU is quite recent and doubly challenging:

• At methodology and formalisms level: in conventional software development
methods, software is designed without consideration to the possibility of dynamic
updating. Although the use of formal methods during the software development
process at different levels, most of applications were not developed to be
dynamically updated. DSU introduces techniques and features that make necessary
an early thinking about formalisation in term of documentation, prediction and
constraints.

• At the level of the correctness criteria: DSU is used in critical applications areas. The
use of formal methods is necessary to establish DSU correctness. The differences
between applications area, techniques used in DSU systems and constraints related to
the application area lead to several definitions of the notion of DSU correctness. The
choice of the suitable formalism is impacted by the criteria that a DSU system has to
ensure.

At the light of the surveyed papers, we outline some research trends about methodology
and formalisation. Table 1 allows to outline the kind of properties to take into account in
some applications: for example, in concurrent programming, one has to verify that the
introduced dynamic update does not alter the deadlock free property. The use of DSU in
object oriented programs must consider the consistency while updating the different
objects created by the application. Table 1 is designed to allow the selection of
correctness criteria related to an application style and area.

 Formal methods in dynamic software updating: a survey 107

Table 2 Formal paradigms and techniques for correctness criteria

Pr
op

er
ty

Fo

rm
al

ism
s u

se
d

Te
ch

ni
qu

es

Ty
pe

 sa
fe

ty

•
Al

ge
br

ai
c:

 Z
ha

ng
 e

t a
l.

(2
01

2)
; C

he
n

et
 a

l.
(2

01
0)

.
•

Fu
nc

tio
na

l:
H

ic
ks

 (2
00

1)
; G

ilm
or

e
et

 a
l.

(1
99

7)
; D

ug
ga

n
(2

00
5)

; B
ui

ss
on

an

d
D

ag
na

t (
20

10
);

A
nd

er
so

n
(2

01
3)

; B
ie

rm
an

 e
t a

l.
(2

00
3)

; S
to

yl
e

(2
00

6)
;

A
nd

er
so

n
an

d
Ra

th
ke

 (2
01

2)
.

•
Ty

pe
 sy

st
em

: M
al

ab
ar

ba
 e

t a
l.

(2
00

0)
; B

oy
ap

at
i e

t a
l.

(2
00

3)
; N

ea
m

itu
 e

t a
l.

(2
00

6)
; D

ug
ga

n
(2

00
5)

; S
to

yl
e

(2
00

6)
; B

ie
rm

an
 e

t a
l.

(2
00

3)
; C

he
n

an
d

H
ua

ng
 (2

00
9)

.

•
St

at
ic

 u
pd

at
ab

ili
ty

 a
na

ly
sis

: N
ea

m
tu

 e
t a

l.
(2

00
6)

; S
to

yl
e

(2
00

6)
.

•
Se

ss
io

n
ty

pi
ng

 a
na

ly
sis

: A
nd

er
so

n
(2

01
3)

; A
nd

er
so

n
an

d
Ra

th
ke

 (2
01

2)
.

•
Th

eo
re

m
 p

ro
vi

ng
: B

ui
ss

on
 a

nd
 D

ag
na

t (
20

10
).

•
St

at
ic

 a
na

ly
si

s w
ith

 ty
pe

 c
he

ck
er

: G
ilm

or
e

et
 a

l.
(1

99
7)

.
•

Re
w

rit
in

g:
 Z

ha
ng

 e
t a

l.
(2

01
2)

.
•

M
od

el
 c

he
ck

in
g:

 C
he

n
et

 a
l.

(2
01

0)
.

Co
ns

ist
en

cy

•
Al

ge
br

ai
c:

 Z
ha

ng
 e

t a
l.

(2
01

2)
.

•
St

at
e

tr
an

sit
io

n:
 P

an
zi

ca
 L

a
M

an
na

 (2
01

1)
.

•
Fu

nc
tio

na
l:

H
ic

ks
 (2

00
1)

; G
ilm

or
e

et
 a

l.
(1

99
7)

; S
to

yl
e

(2
00

6)
; H

as
hi

m
ot

o
(2

00
7)

; B
ui

ss
on

 e
t a

l.
(2

01
6)

; N
ea

m
tiu

 e
t a

l.
(2

00
8)

.
•

G
ra

ph
 d

ep
en

de
nc

ie
s:

 L
ee

 (1
98

3)
.

•
Re

wr
iti

ng
: Z

ha
ng

 e
t a

l.
(2

01
2)

.
•

St
at

ic
 a

na
ly

si
s w

ith
 c

on
sis

te
nc

y
ch

ec
ke

r:
 L

ee
 (1

98
3)

; G
ilm

or
e

et
 a

l.
(1

99
7)

.
•

U
pd

at
ab

ili
ty

 a
na

ly
sis

: S
to

yl
e

(2
00

6)
.

•
St

at
ic

 a
na

ly
si

s:
 M

ur
ar

ka
 a

nd
 B

el
lu

r (
20

08
);

M
ur

ar
ka

 e
t a

l.
(2

00
6)

.
•

Ab
str

ac
t i

nt
er

pr
et

at
io

n:
 H

as
hi

m
ot

o
(2

00
7)

.
•

Th
eo

re
m

 p
ro

vi
ng

: B
ui

ss
on

 e
t a

l.
(2

01
6)

.
N

o
cr

as
h

•
Al

ge
br

ai
c:

 Z
ha

ng
 e

t a
l.

(2
01

2)
.

•
Fu

nc
tio

na
l:

St
oy

le
 (2

00
6)

.
•

Re
w

rit
in

g:
 Z

ha
ng

 e
t a

l.
(2

01
2)

.

Se
m

an
tic

al

co
rre

ct
ne

ss

•
Al

ge
br

ai
c:

 Z
ha

ng
 e

t a
l.

(2
01

2,
 2

01
3,

 2
01

4)
; C

he
n

et
 a

l.
(2

01
0)

.
•

Fu
nc

tio
na

l:
H

as
hi

m
ot

o
(2

00
7)

; H
ay

de
n

(2
01

2)
.

•
Ax

io
m

at
ic

: C
ha

rlt
on

 e
t a

l.
(2

01
1)

.
•

St
at

e
tr

an
sit

io
n:

 H
ay

de
n

et
 a

l.
(2

01
2)

; A
lte

ka
r e

t a
l.

(2
00

5)
; P

an
zi

ca
 L

a
M

an
na

 (2
01

1)
; W

u
et

 a
l.

(2
00

8)
; Z

ha
ng

 e
t a

l.
(2

01
5)

.
•

Ty
pe

 a
nd

 e
ffe

ct
 sy

st
em

s:
 A

nd
er

so
n

an
d

Ra
th

ke
 (2

00
9)

.

•
Bi

si
m

ul
at

io
n:

 H
ay

de
n

et
 a

l.
(2

01
2)

; H
ay

de
n

(2
01

2)
.

•
Pr

og
ra

m
 a

nn
ot

at
io

n:
 C

ha
rlt

on
 e

t a
l.

(2
01

1)
; H

ay
de

n
(2

01
2)

.
•

St
at

ic
 a

na
ly

si
s:

 A
lte

ka
r e

t a
l.

(2
00

5)
.

•
Re

fin
em

en
t:

W
u

et
 a

l.
(2

00
8)

.
•

Ab
str

ac
t i

nt
er

pr
et

at
io

n:
 H

as
hi

m
ot

o
(2

00
7)

.
•

M
od

el
 c

he
ck

in
g:

 Z
ha

ng
 e

t a
l.

(2
01

3,
 2

01
4,

 2
01

5)
; C

he
n

et
 a

l.
(2

01
0)

.
Co

n-
fre

en
es

s
•

Fu
nc

tio
na

l:
St

oy
le

 e
t a

l.
(2

00
7)

.
•

St
at

ic
 u

pd
at

ab
ili

ty
 a

na
ly

si
s:

 S
to

yl
e

et
 a

l.
(2

00
7)

; L
v

et
 a

l.
(2

01
2)

.
Re

ac
ha

bi
lit

y
•

St
at

e
tr

an
sit

io
n:

 G
up

ta
 (1

99
4)

; G
up

ta
 a

nd
 Ja

lo
te

 (1
99

3)
; G

up
ta

 e
t a

l.
(1

99
6)

.
•

St
at

ic
 a

na
ly

si
s:

 G
up

ta
 (1

99
4)

; G
up

ta
 a

nd
 Ja

lo
te

 (1
99

3)
; G

up
ta

 e
t a

l.
(1

99
6)

.
D

ea
dl

oc
k

fre
e

•
G

ra
ph

-b
as

ed
 m

od
el

is
at

io
n:

 M
ur

ar
ka

 (2
01

0)
; M

ur
ar

ka
 a

nd
 B

el
lu

r (
20

08
).

•
Fu

nc
tio

na
l:

A
nd

er
so

n
(2

01
3)

; A
nd

er
so

n
an

d
Ra

th
ke

 (2
01

2)
.

•
Se

ss
io

n
ty

pi
ng

 a
na

ly
sis

: A
nd

er
so

n
(2

01
3)

; A
nd

er
so

n
an

d
Ra

th
ke

 (2
01

2)
.

•
St

at
ic

 a
na

ly
sis

: M
ur

ar
ka

 (2
01

0)
; M

ur
ar

ka
 a

nd
 B

el
lu

r (
20

08
).

A
ct

iv
en

es
s

sa
fe

ty

•
St

at
e

tra
ns

iti
on

: H
ay

de
n

(2
01

2)
.

•
Fu

nc
tio

na
l:

Bu
iss

on
 e

t a
l.

(2
01

6)
.

•
D

ep
en

de
nc

ie
s a

na
ly

se
r:

 L
v

et
 a

l.
(2

01
2)

.
•

St
at

ic
 a

na
ly

sis
: L

v
et

 a
l.

(2
01

2)
.

•
Th

eo
re

m
 p

ro
vi

ng
: B

ui
ss

on
 e

t a
l.

(2
01

6)
.

U
pd

at
ab

ili
ty

•

St
at

e
tr

an
sit

io
n:

 Z
ha

ng
 e

t a
l.

(2
01

5)
.

•
M

od
el

 c
he

ck
in

g:
 Z

ha
ng

 e
t a

l.
(2

01
5)

.

 108 R. Lounas et al.

In Table 2, we highlighted the formalisms and techniques used to establish correctness.
This table allows to establish links between approaches of formalisation and correctness
criteria and thus help to decide which is the most suitable approach for some correctness
criteria. It appears that interesting extensions may be explored. For example, in Anderson
(2013), type systems are improved with effects to capture specifications for
multi-threaded C programs. We think that such extension will help formal reasoning on
DSU for other types of languages (object oriented for example). Another possible
extension concerns the behavioural properties that use principally HL and state transition
formalism. Extensions of HL are defined in formal reasoning for DSU in sequential
programs, analogously the idea may be used to establish DSU correctness in some
paradigms like object oriented or functional programming, in addition to the use of an
algebraic formalism to reason about DSU in object oriented programs as extension to
Zhang et al. (2012).

Another observed point concerns formalisation. Two categories are outlined
considering whether the formalisation is performed after the full development of the
system or before and during its development. In some papers, the process of
formalisation is done after the development of the system (Noubissi et al., 2011; Chen
et al., 2007; Zhang et al., 2012) whereas in other papers, this formal study is done before
or during the process of programming (Murarka, 2010; Hayden et al., 2012; Anderson,
2013; Stoyle, 2006). In this trend, research papers pointed recently the importance to
build update aware applications (Giuffrida and Tanenbaum, 2009; Giuffrida et al., 2017),
the authors used the expression live update-friendly systems to describe this idea. In An
et al. (2015), Zhang et al. (2014, 2015) and Wu et al. (2008), the authors used formal
methods at design level. The interaction between this approach for DSU formalisation
and the promising idea of building dynamic update aware software may foster research
with regard to this trend. In ANSSI (2015), the French Agence Nationale de la Sécurité
des Systèmes d’Information (ANSSI) the authors has proposed a dedicated process
allowing to certify a product that can be dynamically changed, certifying the update code
and the loader. It defines the concepts and the methodology applicable to the evaluation
of a product embedding a code loading mechanism and the usage of this loader as part of
the assurance continuity process.

The surveyed researches raise the following issues in formalisation: some DSU
systems are implemented by transforming the initial program to be updatable (Stoyle
et al., 2007; Giuffrida and Tanenbaum, 2009; Orso et al., 2002). This is performed for
example in Orso et al. (2002) with proxy classes. The obtained updatable program is
supposed to be equivalent to the initial version. We believe that this equivalence have to
be verified using formal methods in order to avoid erroneous behaviours in such program
transformations. Another issue is related to the application area of updated systems. As
outlined, the application of formal methods for DSU correctness is a challenging task.
This is even more accentuated with resource limited applications such as embedded
systems. Recently, in Lounas et al. (2017a), the authors pointed out the difficulty to
embed formal verification for semantical correctness in a DSU system for Java Card
applications.

Finally, research trends concerning DSU correctness outlined that common properties
have attracted more research that semantical correctness of programs. The use of DSU in
critical applications and their need for certification in security issues suggest that both
properties should be considered. A dynamic update for a critical system must be verified
to be type safe but this is not enough, indeed, we must ensure that the updated program

 Formal methods in dynamic software updating: a survey 109

behaves as expected and does not introduce malicious behaviours. We notice through the
surveyed articles that some applications of DSU system in critical domains do not use
formal methods but project it in future works. Information collected in this survey is
useful to such a perspective to formally ensure DSU correctness.

6 Related works

Researches about DSU were surveyed in several papers according to different points of
view. In Miedes and Muñoz-Escoi (2012b), the authors presented a chronological survey
of DSU systems. This survey explores the goals of DSU, its techniques and application in
several domains with a focus on distributed programs. In Seifzadeh et al. (2013), the
authors presented a taxonomy of DSU systems according to several views such as
evaluation metrics (e.g., supported changes and predictability of the updates) and reviews
based on the presentation of DSU techniques like state transfer techniques and choice of
the time of update. In Giuffrida and Tanenbaum (2010), the authors presented a
classification according to the nature of the update whether it concerns changes in code,
data or resources like memory. In Miedes and Muñoz-Escoi (2012b), the authors
presented a survey that focuses on goals and requirements of DSU and the presentation of
its principle techniques.

In de Pina (2016), the author presents a considerable survey to compare DSU systems
with regard mainly to used techniques, flexibility and efficiency. The notion of
correctness in this work is based on the development of a testing framework for DSU. He
also presented several classifications for DSU systems. For example, the document
compare systems whether they are transformed to support update or no. They are also
compared to point out if they respond to all DSU challenges to point out systems that do
not implement some features such as Dmitriev (2001). Another presented comparison is
related to either systems adopts patch generation approaches to prepare updates or relies
on whole program update approaches.

Existing surveys helped us in the assimilation of different mechanisms and
techniques, but there is an evident lack in response to the increasing need to establish
formal correctness of DSU. Our survey complements the existing surveys by bringing
new points of view. We proposed a classification according to the style of the
programming languages. This classification includes more styles than the one presented
in Seifzadeh et al. (2013) (procedural, object oriented and functional).We were aware to
present systems from diverse applications areas. We detailed correctness properties and
did more than a recapitulation. Our survey explains properties in order to choose suitable
formal methods to establish them. The novelty of our survey is the categorisation of the
use of formal methods to establish DSU correctness.

7 Conclusions

DSU systems are increasingly gaining interest as the most promising solution to software
evolution and high availability systems. DSU solutions are developed for systems from
different application areas and programming styles.

 110 R. Lounas et al.

Applying DSU raises correctness issues because an update can introduce errors that
corrupt systems functionalities. In this paper, we presented a state of the art related to the
application of formal methods to DSU correctness. We outlined that DSU is a critical
feature in applications requiring high availability and that the application of formal
methods strengthen considerably safety and security of DSU systems. We began by
presenting the major challenges in DSU and pointed out the importance of correctness.
Then, we gave a classification of DSU systems according to programming paradigms.
We studied the different notions of DSU correctness and studied the use of formal
methods to establish them.

As far as we know, this is the first survey about the application of formal methods in
DSU. We presented a comprehensive review of DSU correctness criteria and proposed a
classification of formalisation approaches. The classification shows which formal
methods have been used in DSU and how they were used to deal with correctness criteria.
This contribution is thought to assist ongoing researches and help in selecting the
appropriate approach to formally establish DSU correctness. We identified on the base of
the surveyed articles, some open research directions by outlining relations between
formalisms, properties and DSU development. Formalisation in DSU is a quite recent
research field. The application of DSU in several application areas and the richness of
formalisation approaches lead to papers from different scientific background and thus to
interesting potential scientific collaborations. We believe that this contribution provides a
reference in comprehension and investigating the application of formal methods to DSU.

References
Altekar, G., Bagrak, I., Burstein, P. and Schultz, A. (2005) ‘OPUS: online patches and updates for

security’, Proceedings of the 14th Conference on USENIX Security Symposium, USENIX
Association, Vol. 14.

An, S., Ma, X., Cao, C., Yu, P. and Xu, C. (2015) ‘An event-based formal framework for dynamic
software update’, IEEE International Conference on Software Quality, Reliability and
Security, QRS, Vancouver, BC, Canada.

Anderson, A. and Rathke, J. (2009) ‘Migrating protocols in multi-threaded message-passing
systems’, Proceedings of the 2nd International Workshop on Hot Topics in Software
Upgrades (HotSWUp).

Anderson, G. (2013) Behavioural Properties and Dynamic Software Update for Concurrent
Programs, PhD thesis, University of Southampton.

Anderson, G. and Rathke, J. (2012) ‘Dynamic software update for message passing programs’,
Programming Languages and Systems, Springer Berlin Heidelberg, pp.207–222.

ANSSI (Secrétariat Général de la Défense et de la Sécurité Nationale Security) (2015)
Requirements for Post-Delivery Code Loading, National Agency of Information Systems
Security, Paris, France.

Arnold, J. and Frans, K.M. (2009) ‘Ksplice: automatic rebootless kernel updates’, Proceedings of
the 4th ACM European Conference on Computer Systems (EuroSys), pp.187–198.

Baier, C. and Katoen, J.P. (2008) Principles of Model Checking (Representation and Mind Series),
The MIT Press, Cambridge, Massachusetts; London, England.

Baumann, A., Kerr, J., Da Silva, D., Krieger, O. and Wisniewski, R.W. (2005) ‘Module
hot-swapping for dynamic update and reconfiguration in K42’, in 6th Linux Conf. Au.

Bertot, Y. and Castéran, P. (2013) Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions, Springer Science & Business Media.

 Formal methods in dynamic software updating: a survey 111

Bierman, G., Hicks, M., Sewell, P. and Stoyle, G. (2003) ‘Formalizing dynamic software updating’,
On-line Proceedings of the Second International Workshop on Unanticipated Software
Evolution (USE).

Boyapati, C., Liskov, B., Shrira, L., Moh, C-H. and Richman, S. (2003) ‘Lazy modular upgrades in
persistent object stores’, Proceedings of the 18th Annual ACM SIGPLAN Conference on
Object-oriented Programing, Systems, Languages, and Applications, ACM publisher.

Buisson, J. and Dagnat, F. (2010) ‘ReCaml: Execution state as the cornerstone of reconfigurations’,
SIGPLAN Not., ACM, New York, pp.27–38.

Buisson, J., Dagnat, F., Leroux, E. and Martinez, S. (2016) ‘Safe reconfiguration of Coqcots and
Pycots components’, Journal of Systems and Software, Vol. 122, No. C, pp.430–444..

Charlton, N., Horsfall, B. and Reus, B. (2011) ‘Formal reasoning about runtime code update’, in
ICDE Workshops, pp.134–138.

Chen, H., Yu, J., Chen, R., Zang, B. and Yew, P-C. (2007) ‘POLUS: a powerful live updating
system’, Proceedings of the 29th International Conference on Software Engineering (ICSE),
pp.271–281.

Chen, J. and Huang, L. (2009) ‘Dynamic service update based on OSGi’, Software Engineering,
(WCSE), WRI World Congress, pp.493–497.

Chen, J., Huang, L., Du, S. and Zhou, W. (2010) ‘A formal model for supporting frameworks of
dynamic service update based on OSGi’, in 17th Asia Pacific Software Engineering
Conference (APSEC), pp.234–241.

Common Criteria (2016) [online] http://www.commmoncriteria.org (accessed 15th October 2017).
de Pina, L., Veiga, L. and Hicks, M. (2014) ‘Rubah: DSU for java on a stock JVM’, Proceedings of

the 2014 ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’14, ACM New York, NY, USA, October, Vol. 49,
No. 10, pp.103–119.

de Pina, L.G.G. (2016) Practical Dynamic Software Updating, PhD thesis, University of Lisbon,
Portugal.

Dershowitz, N. and Jouannaud, J.P. (1990) ‘Rewrite systems’, Handbook of Theoretical Computer
Science, Vol. B, pp.243–320, MIT Press, Cambridge, MA, USA.

Dmitriev, M. (2001) ‘Towards flexible and safe technology for runtime evolution of java language
applications’, in Proceedings of the Workshop on Engineering Complex Object-Oriented
Systems for Evolution.

Duggan, D. (2005) ‘Type-based hot swapping of running modules’, Acta Inf., Vol. 41, No. 4,
pp.181–220, Springer-Verlag New York, Inc.

Felser, M., Kapitza, R., Kleinöder, J. and Schröder-Preikschat, W. (2007) ‘Dynamic software
update of resource-constrained distributed embedded systems’, Embedded System Design:
Topics, Techniques and Trends, pp.387–400, Springer US.

FreeRTOS (2016) [online] http://www.freertos.org/ (accessed 15th October 2017).
Frieder, O. and Segal, M.E. (1991) ‘On dynamically updating a computer program: from concept to

prototype’, J. Syst. Softw., Vol. 14, No. 2, pp.111–128, Elsevier Science Inc.
Gilmore, S., Kéirlí, D. and Walton, C. (1997) Dynamic ML without Dynamic Types, Technical

Report ECS-LFCS-97-378, Laboratory for the Foundations of Computer Science, University
of Edinburgh.

Giuffrida, C. and Tanenbaum, A.S. (2009) ‘Cooperative update: a new model for dependable live
update’, Proceedings of the 2nd International Workshop on Hot Topics in Software Upgrades,
ACM Publisher, pp.1:1–1:6.

Giuffrida, C. and Tanenbaum, A.S. (2010) ‘A taxonomy of live updates’, in Advanced School for
Computing and Imaging (ASCI) Conference.

Giuffrida, C., Iorgulescu, C., Tamburrelli, G. and Tanenbaum, A.S. (2017) ‘Automating live update
for generic server programs’, IEEE Transactions on Software Engineering, Vol. 43, No. 3,
IEEE Press, Piscataway, NJ, USA.

 112 R. Lounas et al.

Giuffrida, K.A and Tanenbaum, A.S. (2013) ‘Safe and automatic live update for operating
systems’, in Architectural Support for Programming Languages and Operating Systems,
ASPLOS’13, Houston, TX, USA.

Gupta, D. (1994) On-line Software Version Change, PhD thesis, Indian Institute of Technology,
India.

Gupta, D. and Jalote, P. (1993) ‘On line software version change using state transfer between
processes’, Softw. Pract. Exper., Vol. 23, No. 9, pp.949–964, John Wiley & Sons, Inc.

Gupta, D., Jalote, P. and Barua, G. (1996) ‘A formal framework for on-line software version
change’, IEEE Trans. Softw. Eng., IEEE Press, pp.120–131.

Hashimoto, M. (2007) ‘A method of safety analysis for runtime code update’, Advances in
Computer Science – ASIAN 2006, Secure Software and Related Issues, Springer Berlin
Heidelberg, pp.60–74.

Hayden, C.M. (2012) Clear, Corret and Efficient Dynamic Software Updates, PhD thesis,
University of Maryland, USA.

Hayden, C.M., Magill, S., Hicks, M., Foster, N. and Foster, J.S. (2012) ‘Specifying and verifying
the correctness of dynamic software updates’, Proceedings of the 4th International Conference
on International Conference on Verified Software: Theories, Tools, Experiments (VSTTE).

Hicks, M. (2001) Dynamic Software Updating, PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, USA.

Hjálmtýsson, G. and Gray, R. (1998) ‘Dynamic C++ classes: a lightweight mechanism to update
code in a running program’, Proceedings of the Annual Conference on USENIX Annual
Technical Conference.

Hoare, C.A.R. (1969) ‘An axiomatic basis for computer programming’, in Commun. ACM, Vol. 12,
No. 10, pp.576–580, ACM New York, NY, USA.

Holmbacka, S., Lund, W., Lafond, S. and Lilius, J. (2013) ‘Lightweight framework for runtime
updating of C-based software in embedded systems’, Proceedings of 5th Workshop on Hot
Topics in Software Upgrades, USENIX Publisher.

Java Card (2016) [online] http://www.oracle.com/technetwork/java/javacard/ (accessed 15th
October 2017).

Lee, I. (1983) Dymos: A Dynamic Modification System, PhD thesis, University of Wisconsin,
Madison, USA.

Liu, J. and Tong, W. (2011) ‘A framework for dynamic updating of service pack in the internet of
things’, Internet of Things (iThings/CPSCom), International Conference on and 4th
International Conference on Cyber, Physical and Social Computing, pp.33–42.

Lounas, R., Jafri, N., Legay, A., Mezghiche, M. and Lanet, J.L. (2017b) ‘A formal verification of
safe update point detection in dynamic software updating’, in Cuppens, F., Cuppens, N.,
Lanet, J.L. and Legay, A. (Eds.): Risks and Security of Internet and Systems, CRiSIS 2016,
Lecture Notes in Computer Science, Vol. 10158, Springer, Cham.

Lounas, R., Mezghiche, M. and Lanet, J.L. (2015) ‘An approach for formal verification of updated
java bytecode programs’, Proceedings of the 9th Workshop on Verification and Evaluation of
Computer and Communication Systems, pp.51–64.

Lounas, R., Mezghiche, M. and Lanet, J.L. (2017a) ‘A formal verification of dynamic updating in a
java-based embedded system’, International Journal of Critical Computer-Based Systems
(in press).

Lv, W., Zuo, X. and Wang, L. (2012) ‘Dynamic software updating for onboard software’,
Proceedings of Second International Conference on Intelligent System Design and
Engineering Application, pp.251–253.

Makris, K. (2009) Whole Program Dynamic Software Updating, PhD thesis, Arizona State
University, USA.

Makris, K. and Ryu, K.D. (2007) ‘Dynamic and adaptive updates of non-quiescent subsystems in
commodity operating system kernels’, SIGOPS Oper. Syst. Rev., Vol. 41, No. 3, pp.327–340,
ACM New York, NY, USA.

 Formal methods in dynamic software updating: a survey 113

Malabarba, S., Pandey, R., Gragg, J., Barr, E. and Fritz Barnes, J. (2000) ‘Runtime support for
type-safe dynamic java classes’, in Proc. ECOOP 2000 Object-Oriented Programming,
Springer Berlin Heidelberg.

Maude (2017) [online] http://maude.cs.illinois.edu (accessed 15th October 2017).
Miedes, E. and Muñoz-Escoi, F.D. (2012a) Dynamic Software Update, University of Valencia,

Spain, Technical Report, ITI-SIDI-2012/004.
Miedes, E. and Muñoz-Escoi, F.D. (2012b) ‘A survey about dynamic software updating’, Technical

Report ITI-SIDI-2012/003, University of Valencia, Spain.
Murarka, Y. (2010) Online Update of Concurrent Object Oriented Programs, PhD thesis, Indian

Institute of Technology, India.
Murarka, Y. and Bellur, U. (2008) ‘Correctness of request executions in online updates of

concurrent object oriented programs’, Proceedings of 15th Asia-Pacific of Software
Engineering Conference, pp.93–100.

Murarka, Y., Bellur, U. and Joshi, R.K. (2006) ‘Safety analysis for dynamic update of object
oriented programs’, Proceedings of 13th Asia Pacific Software Engineering Conference,
pp.225–232.

Neamtiu, I. and Hicks, M. (2009) ‘Safe and timely updates to multi-threaded programs’,
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM New York, pp.13–24.

Neamtiu, I., Hicks, M., Foster, J.S. and Pratikakis, P. (2008) ‘Contextual effects for
version-consistent dynamic software updating and safe concurrent programming’, Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM Publisher, pp.37–49.

Neamtiu, I., Hicks, M., Stoyle, G. and Oriol, M. (2006) ‘Practical dynamic software updating for
C’, Conference on Programming Language Design and Implementation, (PLDI), Proceedings
of the 27th ACM SIGPLAN, pp.72–83.

Noubissi, A.C. (2011) Mise á Jour Dynamique et Sécurisée de Composants Systéme dans une
Carte á Puce, PhD thesis, University of Limoges, France.

Noubissi, A.C., Iguchi-Cartigny, J. and Lanet, J.L. (2010a) ‘Incremental dynamic update for
java-based smart cards’, in Proc. Fifth International Conference on Systems, pp.110–113.

Noubissi, A.C., Iguchi-Cartigny, J. and Lanet, J.L. (2011) ‘Hot Updates for java based smart cards’,
in ICDE Workshops, pp.168–173.

Noubissi, A.C., Iguchi-Cartigny, J. and Lanet, J-L. (2010b) ‘Convergence OSGI JAVACARD: fine
grained dynamic update’, Eurosmart Smart Card Security Conference and Java Card,
(e-Smart), Sophia Antipolis France.

Ogata, K. and Futatsugi, K. (2003) ‘Proof scores in the OTS/CafeOBJ method’, Formal Methods
for Open Object-Based Distributed Systems, Springer Berlin Heidelberg, pp.170–184.

Orso, A., Rao, A. and Harrold, M.J. (2002) ‘A technique for dynamic updating of java software’,
Proceedings of the International Conference on Software Maintenance, pp.649–658.

Panzica La Manna, V. (2011) ‘Dynamic software update for component-based distributed systems’,
Proceedings of the 16th International Workshop on Component-Oriented Programming, ACM
New York, pp.1–8.

Potet, M.L. and Rouzaud, Y. (1998) ‘Composition and refinement in the B-method’, B’98: Recent
Advances in the Development and Use of the B Method, Springer Berlin Heidelberg, pp.46–65.

Qiang, W., Chena, F., Laurence, T. and Jin, H. (2016) ‘MUC: updating cloud applications
dynamically via multi-version execution’, Future Generation Computer Systems, Vol. 74,
No. C, pp. 254–264.

Rinderle, S., Reichert, M. and Dadam, P. (2004) ‘Correctness criteria for dynamic changes in
workflow systems: a survey’, Data Knowl. Eng., Vol. 50, No. 1, pp.9–34, Elsevier Science
Publishers B.V., Amsterdam.

 114 R. Lounas et al.

Rushby, J. (1997) ‘Formal methods and their role in the certification of critical systems’, Safety and
Reliability of Software Based Systems, Springer London, pp.1–42.

Sangiorgi, D. (2009) ‘On the origins of bisimulation and coinduction’, ACM Transactions on
Programming Languages and Systems, ACM Publisher.

Seifzadeh, H., Abolhassani, H. and Moshkenani, M.S. (2013) ‘A survey of dynamic software
updating’, Journal of Software: Evolution and Process, Vol. 25, No. 5, pp.2047–7481.

Silva, V.D., Kroening, D. and Weissenbacher, G. (2008) ‘A survey of automated techniques for
formal software verification’, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE Publisher, pp.1165–1178.

Solarski, M. (2004) Dynamic Upgrade of Distributed Software Components, PhD thesis, University
of Berlin, Germany.

Stoyle, G. (2006) A Theory of Dynamic Software Updates, PhD thesis, University of Cambridge,
UK.

Stoyle, G., Hicks, M., Bierman, G., Sewell, P. and Neamtiu, I. (2007) ‘Mutatis mutandis: safe and
predictable dynamic software updating’, ACM Trans. Program. Lang. Syst.

Subramanian, S., Hicks, M. and McKinley, K.S. (2009) ‘Dynamic software updates: a VM centric
approach’, Proceedings of the 30th ACMSIGPLAN Conference on Programming Language
Design and Implementation, ACM, pp.1–12.

Vxworks (2016) [online] http://windriver.com/products/vxworks/ (accessed 15th October 2017).
Wahler, M. and Oriol, M. (2014) ‘Disruption-free software updates in automation systems’,

Emerging Technology and Factory Automation (ETFA), IEEE, pp.1–8.
Wu, J., Huang, L. and Wang, D. (2008) ‘ASM-based model of dynamic service update in OSGi’,

SIGSOFT Softw. Eng. Notes, Vol. 33, No. 2, pp.1–8, ACM Publisher.
Zhang, M., Ogata, K. and Futatsugi, K. (2012) ‘An algebraic approach to formal analysis of

dynamic software updating mechanisms’, Asia Pacific Software Engineering Conference
(APSEC), pp.664–673.

Zhang, M., Ogata, K. and Futatsugi, K. (2013) ‘Formalization and verification of behavioral
correctness of dynamic software updates’, Electr. Notes Theor. Comput. Sci., Vol. 294,
Proceedings of the 2013 Validation Strategies for Software Evolution (VSSE) Workshop,
pp.12–23.

Zhang, M., Ogata, K. and Futatsugi, K. (2014) ‘Verifying the design of dynamic software updating
in the OTS/CafeOBJ method’, Specification, Algebra, and Software – Essays Dedicated to
Kokichi Futatsugi, pp.560–577.

Zhang, M., Ogata, K. and Futatsugi, K. (2015) ‘Towards a Formal approach to modeling and
verifying the design of dynamic software updates’, Asia-Pacific Software Engineering
Conference (APSEC), pp.159–166.

