Energy extraction by an oscillating system from a shaker or a wave field
by Tatyana Krasnopolskaya; Evgeniy Pechuk
International Journal of Nonlinear Dynamics and Control (IJNDC), Vol. 1, No. 3, 2019

Abstract: The purpose of our work is to study an oscillating system and an electro-dynamical transducer, which are driven either by the amplifier or wave field. In the first case electrical current produced by an amplifier is converted by the transducer into mechanical force, which leads to vibrations of the base. A mechanical oscillator is mounted on the transducer base. The influence of oscillator vibrations on the formation of the driving force leads to a number of specific effects, in particular, to the Sommerfeld-Kononenko's effect. Steady-state regimes of the constructed model are investigated by methods of the theory of dynamical systems. Expressions for supplied and consumed powers are shown and investigated for regular and chaotic regimes. The inverse problem model is also discussed. The classical results for wave power absorption by wave energy extractor as a single degree of freedom system are presented in the second considered problem. The example includes an axisymmetric buoy which oscillates and is subjected to its natural hydrostatic restoring force. Main attention focuses on the values and expressions for the mean powers. The expression for the maximum mean power is given for the considering system.

Online publication date: Fri, 29-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nonlinear Dynamics and Control (IJNDC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com