Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO2
by Siriluck Tesana; Gregory F. Metha; Gunther G. Andersson; Chris Ridings; Vladimir Golovko
International Journal of Nanotechnology (IJNT), Vol. 15, No. 8/9/10, 2018

Abstract: The [Ru3(μ-AuPPh3)(μ-Cl)(CO)10] and [Au9(PPh3)8(NO3)3] clusters were synthesised according to well-established procedures and their identities were confirmed by NMR, IR, powder XRD, UV-vis and TGA techniques. Atomically precise Ru3Au cluster was then deposited on dried anatase TiO2 with the metal loading of 0.08, 0.17. 0.35, 0.50, 0.75, 1.00, 1.50, 2.00 and 5.0 wt%. The metal contents were confirmed by AAS and ICP-MS. The DR UV-vis spectra of the as-made catalyst indicated a successful deposition of the clusters on anatase which was also confirmed by the XPS results. However, the removal of protecting ligands via calcination resulted in agglomeration of clusters as revealed by XPS spectra. The photocatalytic performance in methylene blue dye degradation by the Ru3Au cluster immobilised on anatase was investigated under UV LED irradiation (λmax = 370 nm) and visible LED irradiation (λmax = 513 nm). Under UV irradiation, an increase in metal loading caused reduced dye conversion. This was due to the adsorbance of UV light by metal clusters which blocked the incident light onto anatase. The 5.0 wt% of metal loading showed the highest conversion due to the synergistic effects from larger surface plasmon resonance-active particles and surviving clusters (confirmed by XPS). The calcined and recycled catalysts exhibited significantly lower activity, most likely due to pronounced sintering of clusters. At 5.0 wt% of metal loading, the deposition of Ru3Au showed a superior performance in dye degradation as compared to pure Au9 cluster and Au colloid (~12 nm) under visible light.

Online publication date: Fri, 22-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com