In-silico mutational study of ferulic acid decarboxylase for improvement of substrate binding empathy
by Pravin Kumar; Shashwati Ghosh Sachan; Raju Poddar
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 12, No. 1, 2019

Abstract: Biotransformation of ferulic acid by microorganisms provides a better alternative for production of flavour and fragrance compounds like 4-vinylguaiacol and vanillin. Ferulic acid is transformed to 4-vinylguaiacol using the non-oxidative decarboxylation pathway by ferulic acid decarboxylase (FADase). Here we report, computational mutational analysis of active site of FADase. Site directed mutations (single nucleotide polymorphisms, SNPs) were commenced using in-silico molecular modelling methods. Energy minimisation, dynamic cross-correlation map (DCCM) and principle components analysis (PCA) methods were subsequently applied to validate different conformers (SNPs) of FADase. Substrate ferulic acid was docked with different SNPs. It was observed that, certain amino acids like Tyr21, Trp25, Tyr27 and Glu134 at active sites are responsible for better binding to ferulic acid. Further, mutated form Y27F (Tyr27Phe) of FADase shows a better binding affinity towards ferulic acid than its native form through structure analysis and docking studies.

Online publication date: Tue, 05-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com