Surface roughness in ultrasonic-assisted and conventional milling of soda-lime glass
by Yasmine El-Taybany; Mohab Hossam; Jiwang Yan; Hassan El-Hofy
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 21, No. 1/2, 2019

Abstract: Glass has an increasing demand in many industrial fields such as micro-channels and micro reactors in fluidic applications, lab-on-a-chip in medical applications, and micro lens arrays and optical devices. Machining of glass as one of hard-to-machine materials is challengeable due to its distinctive properties of high strength, hardness, and brittleness. Facing these challenges, ultrasonic-assisted milling (UAM); an advanced machining process; was provided for its effectiveness in machining such hard-to-machine materials. In this paper, the effects of feed rate, depth of cut, ultrasonic-vibration assistance, and cutting fluid on surface roughness in UAM of soda-lime glass compared with conventional milling (CM) were investigated. Results showed that, by introducing ultrasonic-vibration, higher surface roughness was obtained. The optimal cutting conditions were attained using response surface methodology. At the optimised parametric setting, the minimum surface roughness was found to be at wet conventional milling.

Online publication date: Fri, 01-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com