Modelling of vortex breakdown and calculation of large-scale kinetic energy on a slender delta wing using URANS and Reynolds-stress modelling
by Zinon Vlahostergios; Dimitrios Komnos; Kyros Yakinthos
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 18, No. 6, 2018

Abstract: A computational study regarding the accurate modelling of the unsteady flow over a slender delta-wing and the vortex breakdown (VB) identification by adopting a Reynolds-stress turbulence model is presented. The VB is identified by the pressure distributions, the stagnation point inside the vortex core and the vorticity development over the delta-wing. Additionally, the whole range of the unsteady flow field kinetic energy, which is divided into two regions, is calculated. The first region is related to the modelled turbulent small-scales and the second to the resolved large-scales, which are produced due to the VB. The distributions of the small-scale, the large-scale and the total kinetic energy along the vortex core are presented, providing information regarding their development during VB. The results show that the adoption of URANS with an advanced/sophisticated turbulence model is able to identify and describe with consistency the VB onset and its development over a slender delta-wing.

Online publication date: Fri, 07-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com