Improvement of densification uniformity of carbon/silicon carbide composites during chemical vapour infiltration
by Kyung-Mi Kim; Jin-Won Seo; Kyoon Choi; Jong-Heun Lee
International Journal of Nanotechnology (IJNT), Vol. 15, No. 6/7, 2018

Abstract: We have investigated the influence of the process parameters on the density and distribution of 2.5D carbon preforms during chemical vapour infiltration (CVI) of silicon carbide. The lower the pressure and the substrate temperature, the higher the density and its uniformity. The temperature of the lower part of the disc-shaped specimen was as low as 1000°C to suppress the surface reaction that caused the closure of the open porosity. The specimen of 1000°C under 10 torr resulted in the density of 72.2% and the standard deviation of 13.9%., while that of 1000°C under 50 torr showed the density of 69.1% and the standard deviation of 18.6%. The low density of the specimen was mainly attributed to the large voids between the carbon bundles.

Online publication date: Mon, 26-Nov-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com