Assessment of anti-arthritic potential of traditionally fermented ayurvedic polyherbal product chandanasava by molecular modelling, docking and dynamics approaches
by Annadurai Vinothkanna; Bagavathy Shanmugam Karthikeyan; Ramachandran Vijayan; Soundarapandian Sekar
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 11, No. 4, 2018

Abstract: Rheumatoid arthritis is triggerred by proteus mirabilis and its virulence factor, urease. We have used molecular modelling, docking, dynamics simulations and experimental approaches to assess the anti-arthritic potential of phytochemicals of Ayurvedic polyherbal formulation Chandanasava by targeting urease subunits of Proteus mirabilis. Chandanasava exhibited antibacterial activity against Proteus mirabilis and Gas Chromatography-Mass Spectroscopy analysis indicated the presence of 42 bioactive phytochemicals. The three dimensional structures of urease subunits (ureA, ureB and ureC) were not available and hence these structures were predicted using homology modelling approach and validated using Ramachandran plot. Molecular docking and dynamics simulations of phytochemicals of Chandanasava against urease subunits showed efficient binding of almost all the compounds. Significantly, lactose, isosorbide, 1,2,3-Benzenetriol, 1,2-Cyclopentanedione and 2-Furancarboxaldehyde, 5-(hydroxymethyl) binds efficiently among other compounds. Thus Chandanasava formulation and some of its bioactive compounds give insights about its therapeutic property against arthritis and further investigations on it can bring out promising therapeutics.

Online publication date: Tue, 13-Nov-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com