Modelling and performance analysis of designed energy-efficient EHA under gravity loads
by Lijing Dong; Hao Yan; Lijun Feng; Qifan Tan
International Journal of Modelling, Identification and Control (IJMIC), Vol. 30, No. 4, 2018

Abstract: Electro-hydrostatic actuators (EHA) are highly resembled hydraulic actuators. For specific applications under gravity loads, an innovative structure of EHA using double variable pump and accumulators with designated pressures specified is proposed. The motor speed and the pump displacement can be adjusted synchronously to provide necessary flow. Consequently, inherent nonlinearity of the two inputs in a multiplication form is involved. Based on analysis of the working principle of the designed EHA, the nonlinear mathematical model precisely describing the multiplication of two coupled inputs is established. The designed EHA balances part of the gravity loads with accumulators, overwhelmingly inducing the energy consumption. Through analysing with reliable and professional hydraulic simulation tool AMESim, the energy saving performance is demonstrated quantitatively.

Online publication date: Tue, 23-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com