Prediction of vehicle mobility on large-scale soft-soil terrain maps using physics-based simulation
by Tamer M. Wasfy; Paramsothy Jayakumar; Dave Mechergui; Srinivas Sanikommu
International Journal of Vehicle Performance (IJVP), Vol. 4, No. 4, 2018

Abstract: A high-fidelity physics-based approach for predicting vehicle mobility over large soft-soil terrain maps is presented. The approach is based on an HPC design-of-experiments (DOE) procedure, and the integration of multibody dynamics for modelling the vehicle and the discrete element method (DEM) for modelling the soil into one solver. A general cohesive soil DEM material model is used which includes the effects of cohesion, elasticity, plasticity/compressibility, damping, friction, and viscosity. To manage problem size, a novel moving soil patch technique is developed in which DEM particles which are behind the vehicle are continuously eliminated and then reemitted in front of the vehicle, levelled and compacted. The DEM inter-particle cohesion and friction are calibrated to the cone index using a simulation of a cone penetrometer. The DOE approach is demonstrated by predicting the speed-made-good distribution on 22 × 22 km terrain map for a 4 × 4 military vehicle. Two terrain parameters are considered in the DOE: terrain positive slope and soil strength.

Online publication date: Mon, 22-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Performance (IJVP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com