Simulation of a multi-cylinder engine vibrational behaviour
by Daniela Siano; Roberto Citarella; Enrico Armentani
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 14, No. 2, 2018

Abstract: This work analyses the vibrational behaviour of an in-line 4-cylinder, 4-stroke, internal combustion turbocharged direct injection gasoline engine. A multi-body numerical model of the engine is implemented, to simulate its dynamic response when running in a bench test. The cranktrain multi-body model is created using geometrical data extracted from engine CAD, using as excitation forces the experimentally measured in-cylinder pressure values. A flexible multi-body approach leverages on FEM modelling of crankshaft, cylinder block and head for the dynamic analysis, with remaining parts modelled as rigid. The engine mounts are modelled by flexible elements with given stiffness and damping. The importance of the explicit modelling of the rods connecting the engine with mounts is highlighted. The software Siemens-LMS Virtual Lab and ANSYS are used for the assessment.

Online publication date: Mon, 01-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com