Prediction of turbulent non-premixed hydrogen flames using second-order conditional moment closure modelling
by M. Fairweather, R.M. Woolley
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 6, No. 1/2/3, 2006

Abstract: The advent of increasingly stringent emissions legislation inevitably leads to the requirement for more accurate modelling of pollutant formation in practical combustion applications. Previous limited success in modelling species such as NO, using first-order conditional moment closure (CMC) models indicates the need for more advanced modelling techniques. Here, a method of including higher-order chemistry within a one-dimensional, parabolic CMC framework is investigated, and applied to the prediction of three hydrogen jets of varying degrees of helium dilution. Interaction of the combustion model with both the k-ε and Reynolds stress turbulence models is examined. Results are encouraging and found to be in line with expectations. Suggestions are made in light of this to account for anomalous predictions of nitrous radical formation.

Online publication date: Wed, 05-Apr-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com