Negative bias temperature instability in strained-Si p-MOSFETs
by Sanghamitra Das; T.P. Dash; Chinmay K. Maiti
International Journal of Nano and Biomaterials (IJNBM), Vol. 7, No. 4, 2018

Abstract: Strained-Si p-channel metal oxide semiconductor field effect transistors (MOSFETs) have become the performance boosters beyond 90 nm technology node. Reliability study of these devices is essential as only a few reports are available on this. In this work, we have explored the degradation mechanisms in these devices due to negative bias temperature instability (NBTI). Device simulation results have been calibrated with reported experimental data and a good agreement is observed. The reliability study of these devices has been performed using the two-stage model for defect creation. Study of the drain current degradation and comparison of threshold voltage shift after stressing between the strained-Si and Si channel p-MOSFETs have been performed. The threshold voltage degradation in strained-Si channel p-MOSFETs is found to be considerably higher than that in the bulk-Si devices due to higher fixed oxide charge and interface trap densities at the strained-Si/SiO2 interface.

Online publication date: Wed, 26-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nano and Biomaterials (IJNBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com